版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省定远县张桥中学2024学年数学高二上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与x轴,y轴分别交于A,B两点,且直线l与圆相切,则的面积的最小值为()A.1 B.2C.3 D.42.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.3.已知,,则下列结论一定成立的是()A. B.C. D.4.若是函数的一个极值点,则的极大值为()A. B.C. D.5.已知椭圆(a>b>0)的离心率为,则=()A. B.C. D.6.函数的导函数的图像如图所示,则()A.为的极大值点B.为的极大值点C.为的极大值点D.为的极小值点7.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切8.已知空间向量,,且,则的值为()A. B.C. D.9.若抛物线y2=4x上一点P到x轴的距离为2,则点P到抛物线的焦点F的距离为()A.4 B.5C.6 D.710.函数的最小值是()A.2 B.4C.5 D.611.如图,D是正方体的一个“直角尖”O-ABC(OA,OB,OC两两垂直且相等)棱OB的中点,P是BC中点,Q是AD上的一个动点,连PQ,则当AC与PQ所成角为最小时,()A. B.C. D.212.若,则下列正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点在以,为焦点的椭圆上运动,则的重心的轨迹方程是___________.14.已知直线与曲线,在曲线上随机取一点,则点到直线的距离不大于的概率为__________.15.已知为曲线:上一点,,,则的最小值为______16.椭圆的左焦点为,M为椭圆上的一点,N是的中点,O为原点,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l的斜率为-2,且与两坐标轴的正半轴围成三角形的面积等于1.圆C的圆心在第四象限,直线l经过圆心,圆C被x轴截得的弦长为4.若直线x-2y-1=0与圆C相切,求圆C的方程18.(12分)已知集合,.(1)当a=3时,求.(2)若“”是“x∈A”的充分不必要条件,求实数a的取值范围.19.(12分)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D(单位:)与声音能量I(单位:)之间的关系,将测量得到的声音强度D和声音能量I的数据作了初步处理,得到如图所示的散点图:参考数据:其中,,,,,,,,(1)根据散点图判断,与哪一个适宜作为声音强度D关于声音能量I的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D关于声音能量I回归方程(3)假定当声音强度D大于时,会产生噪声污染.城市中某点P处共受到两个声源的影响,这两个声通的声音能量分别是和,且.已知点P处的声音能量等于与之和.请根据(2)中的回归方程,判断点P处是否受到噪声污染,并说明理由参考公式:对于一组数据,其回归直线斜率和截距的最小二乘估计公式分别为:20.(12分)已知椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3(1)求椭圆E的方程;(2)若A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,,求21.(12分)已知椭圆的左,右焦点分别为,三个顶点(左、右顶点和上顶点)构成的三角形的面积为,离心率为方程的根.(1)求椭圆方程;(2)椭圆的一个内接平行四边形的一组对边分别过点和,如图,若这个平行四边形面积为,求平行四边形的四个顶点的纵坐标的乘积.22.(10分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由直线与圆相切可得,再利用基本不等式即求.【题目详解】由已知可得,,因为直线与圆相切,所以,即,因为,当且仅当时取等号,所以,,所以面积的最小值为1.故选:A2、D【解题分析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【题目详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D3、B【解题分析】根据不等式的同向可加性求解即可.【题目详解】因为,所以,又,所以.故选:B.4、D【解题分析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【题目详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D5、D【解题分析】由离心率得,再由转化为【题目详解】因为,所以8a2=9b2,所以故选:D.6、A【解题分析】由导函数的图像可得函数的单调区间,从而可求得函数的极值【题目详解】由的图像可知,在和上单调递减,在和上单调递增,所以为的极大值点,和为的极小值点,不是函数的极值点,故选:A7、A【解题分析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【题目详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.8、B【解题分析】根据向量垂直得,即可求出的值.【题目详解】.故选:B.9、A【解题分析】根据抛物线y2=4x上一点P到x轴的距离为2,得到点P(3,±2),然后利用抛物线的定义求解.【题目详解】由题意,知抛物线y2=4x的准线方程为x=-1,∵抛物线y2=4x上一点P到x轴的距离为2,则P(3,±2),∴点P到抛物线的准线的距离为3+1=4,∴点P到抛物线的焦点F的距离为4.故选:A.10、C【解题分析】结合基本不等式求得所求的最小值.【题目详解】,,当且仅当时等号成立.故选:C11、C【解题分析】根据题意,建立空间直角坐标系,求得AC与PQ夹角的余弦值关于点坐标的函数关系,求得角度最小时点的坐标,即可代值计算求解结果.【题目详解】根据题意,两两垂直,故以为坐标原点,建立空间直角坐标系如下所示:设,则,不妨设点的坐标为,则,,则,又,设直线所成角为,则,则,令,令,则,令,则,此时.故当时,取得最大值,此时最小,点,则,故,则故选:C.12、D【解题分析】根据不等式性质并结合反例,即可判断命题真假.【题目详解】对于选项A:若,则,由题意,,不妨令,,则此时,这与结论矛盾,故A错误;对于选项B:当时,若,则,故B错误;对于选项C:由,不妨令,,则此时,故C错误;对于选项D:由不等式性质,可知D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设出点和三角形的重心,利用重心坐标公式得到点和三角形的重心坐标的关系,,代入椭圆方程即可求得轨迹方程,再利用,,三点不共线得到.【题目详解】设,,由,得,即,,因为为的重心,所以,,即,,代入,得,即,因为,,三点不共线,所以,则的重心的轨迹方程是.故答案:.14、【解题分析】画出示意图,根据图形分析可知点在阴影部分所对的劣弧上,由几何概型可求出.【题目详解】作出示意图曲线是圆心为原点,半径为2的一个半圆.圆心到直线距离,而点到直线的距离为,故若点到直线的距离不大于,则点在阴影部分所对的劣弧上,由几何概型的概率计算公式知,所求概率为.故答案为:.【题目点拨】本题考查几何概型的概率计算,属于中档题.15、【解题分析】曲线是抛物线的右半部分,是抛物线的焦点,作出抛物线的准线,把转化为到准线的距离,则到准线的距离为所求距离和的最小值【题目详解】易知曲线是抛物线的右半部分,如图,因为抛物线的准线方程为,是抛物线的焦点,所以等于到直线的距离.过作该直线的垂线,垂足为,则的最小值为故答案为:16、4【解题分析】根据三角形的中位线定理,结合椭圆的定义即可求得答案.【题目详解】椭圆的左焦点为,如图,设右焦点为,则,由N是的中点,O为得中点,,故,又,所以,故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】先根据题意设直线方程,由条件求出直线的方程,再根据条件列出等量关系,求出圆心和半径,进而求得答案.【题目详解】解:设直线l的方程为y=-2x+b(b>0),它与两坐标轴的正半轴的交点依次为,,因为直线l与两坐标轴的正半轴所围成的三角形的面积等于1,所以,解得b=2,所以直线l的方程是,即由题意,可设圆C的圆心为,半径为r,又因为圆C被x轴截得的弦长等于4,所以①,由于直线与圆相切,所以圆心C到直线的距离②,所以①②联立得:,解得:或,又圆心在第四象限,所以,则圆心,,所以圆C方程是.18、(1)(2)【解题分析】(1)解不等式求出集合、,然后根据交集的运算法则求交集;(2)解不等式求出集合、,求出,然后根据充分不必要性列出不等式组求解.【小问1详解】解:由题意得:当时,可解得集合的解集为由可解得或故.【小问2详解】的解集为又又“”是“x∈A”的充分不必要条件解得:,故实数a的取值范围19、(1)更适合(2)(3)点P处会受到噪声污染,理由见解析【解题分析】(1)直接判断即可;(2)令,先算线性回归方程再算非线性回归方程;(3)利用基本不等式计算出的最小值,再与60比较即可.【小问1详解】更适合【小问2详解】令,则,,D关于W的回归方程是,则D关于I的回归方程是【小问3详解】设点P处的声音能量为,则因为所以当且仅当,即时等号成立所以,所以点P处会受到噪声污染20、(1);(2)【解题分析】(1)根据离心率和最大距离建立等式即可求解;(2)根据弦长,求出直线方程,解出点的坐标即可得解.【题目详解】(1)椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3,所以,所以,所以椭圆E的方程;(2)A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,所以线段AB所在直线斜率一定存在,所以设该直线方程代入,整理得:,设,,,整理得:,当时,线段中点坐标,中垂线方程:,;当时,线段中点坐标,中垂线方程:,,综上所述:.21、(1);(2).【解题分析】(1)由椭圆离心率的性质及一元二次方程的根可得,再由椭圆参数关系、已知三角形面积求椭圆参数,即可得椭圆方程.(2)设直线,联立椭圆方程并结合韦达定理求,进而可得,再根据求参数t,可得,结合椭圆的对称性求,即可求结果.【小问1详解】由的根为,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应付账款专员共享岗位职业规划指南
- 《叮铃铃》教学设计
- 2025福建泉州晋江梧林君澜酒店有限责任公司招聘项目制工作人员30人笔试历年参考题库附带答案详解
- 大金管理中的沟通技巧与冲突解决
- 2025江西南昌小蓝房地产开发有限公司面向社会招聘专业技术人员招聘4人笔试历年参考题库附带答案详解
- 2025年江西水投资本管理有限公司第三批社会招聘1人笔试历年参考题库附带答案详解
- 浙江国企招聘2025杭州上城区文商旅投资控股集团有限公司下属企业招聘4人笔试历年参考题库附带答案详解
- 2025秋季安徽合肥市建投集团招聘20人笔试历年参考题库附带答案详解
- 2025湖南医药发展投资集团有限公司人才选聘部分岗位笔试历年参考题库附带答案详解
- 2025浙江嘉兴市嘉善县中新产业发展投资有限公司招聘笔试历年参考题库附带答案详解
- 硬笔行楷书法课件
- ICU呼吸机应用操作指导
- 移动客服沟通话术
- 高中体育人教版 (2019)全一册第三章 培养体育品德第三节 体育品格教学设计
- 2025云南交投集团下属临沧管理处招聘30人笔试历年常考点试题专练附带答案详解试卷3套
- 2025年反洗钱测试题及答案
- 仓管转正述职报告
- 安邦护卫集团总部及下属单位招聘笔试题库2025
- 智能网联汽车产业园项目施工方案
- 2024年船舶工业经济运行报告
- 医院副院长面试题及答案
评论
0/150
提交评论