2022-2023学年上海市风华中学数学高一第二学期期末综合测试模拟试题含解析_第1页
2022-2023学年上海市风华中学数学高一第二学期期末综合测试模拟试题含解析_第2页
2022-2023学年上海市风华中学数学高一第二学期期末综合测试模拟试题含解析_第3页
2022-2023学年上海市风华中学数学高一第二学期期末综合测试模拟试题含解析_第4页
2022-2023学年上海市风华中学数学高一第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正数、满足,则的最小值为()A. B. C. D.2.已知为等差数列,为其前项和.若,则()A. B. C. D.3.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角4.已知在中,为线段上一点,且,若,则()A. B. C. D.5.二进制是计算机技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则“借一当二”。当前的计算机系统使用的基本上是二进制系统,计算机中的二进制则是一个非常微小的开关,用1来表示“开”,用0来表示“关”。如图所示,把十进制数1010化为二进制数(1010)2,十进制数9910化为二进制数11000112,把二进制数(10110A.932 B.931 C.106.的弧度数是()A. B. C. D.7.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”,则().A.1 B.2019 C. D.8.若直线与圆相切,则()A. B. C. D.9.在中,所对的边分别为,若,,,则()A. B. C.1 D.310.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数,是与的等比中项,则的最小值是______.12.中,,,,则________.13.已知数列的前项和是,且,则______.(写出两个即可)14.已知角α的终边与单位圆交于点.则___________.15.已知实数满足则的最小值为__________.16.已知数列的通项公式为,则该数列的前1025项的和___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的单调递减区间;(2)若将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数的图象关于轴对称.求的最小值18.若在定义域内存在实数,使得成立,则称函数有“和一点”.(1)函数是否有“和一点”?请说明理由;(2)若函数有“和一点”,求实数的取值范围;(3)求证:有“和一点”.19.在中,已知,,且,求.20.的内角所对的边分别为,向量,若.(1)求角的大小;(2)若,求的值.21.已知.(1)化简;(2)若是第二象限角,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.2、D【解析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.3、D【解析】

根据象限角写出的取值范围,讨论即可知在第一或第三象限角【详解】依题意得,则,当时,是第一象限角当时,是第三象限角【点睛】本题主要考查象限角,属于基础题.4、C【解析】

首先,由已知条件可知,再有,这样可用表示出.【详解】∵,∴,,∴,∴.故选C.【点睛】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.5、D【解析】

利用古典概型的概率公式求解.【详解】二进制的后五位的排列总数为25二进制的后五位恰好有三个“1”的个数为C5由古典概型的概率公式得P=10故选:D【点睛】本题主要考查排列组合的应用,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.6、B【解析】

由角度与弧度的关系转化.【详解】-150.故选:B.【点睛】本题考查角度与弧度的互化,解题关键是掌握关系式:.7、A【解析】

计算部分数值,归纳得到,计算得到答案.【详解】;;;…归纳总结:故故选:【点睛】本题考查了数列的归纳推理,意在考查学生的推理能力.8、C【解析】

利用圆心到直线的距离等于圆的半径即可求解.【详解】由题得圆的圆心坐标为(0,0),所以.故选C【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.9、A【解析】

利用三角形内角和为,得到,利用正弦定理求得.【详解】因为,,所以,在中,,所以,故选A.【点睛】本题考查三角形内角和及正弦定理的应用,考查基本运算求解能力.10、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

通过是与的等比中项得到,利用均值不等式求得最小值.【详解】实数是与的等比中项,,解得.则,当且仅当时,即时取等号.故答案为:.【点睛】本题考查了等比中项,均值不等式,1的代换是解题的关键.12、7【解析】

在中,利用余弦定理得到,即可求解,得到答案.【详解】由余弦定理可得,解得.故答案为:7.【点睛】本题主要考查了余弦定理的应用,其中解答中熟记三角形的余弦定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.13、或【解析】

利用已知求的公式,即可算出结果.【详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【点睛】本题主要考查利用与的关系公式,即,求的方法应用.14、【解析】

直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】

本题首先可以根据题意绘出不等式组表示的平面区域,然后结合目标函数的几何性质,找出目标函数取最小值所过的点,即可得出结果。【详解】绘制不等式组表示的平面区域如图阴影部分所示,结合目标函数的几何意义可知,目标函数在点处取得最小值,即。【点睛】本题考查根据不等式组表示的平面区域来求目标函数的最值,能否绘出不等式组表示的平面区域是解决本题的关键,考查数形结合思想,是简单题。16、2039【解析】

根据所给分段函数,依次列举出当时的值,即可求得的值.【详解】当时,,当时,,,共1个2.当时,,,共3个2.当时,,,共7个2.当时,,,共15个2.当时,,,共31个2.当时,,,共63个2.当时,,,共127个2.当时,,,共255个2.当时,,,共511个2.当时,,,共1个2.所以由以上可知故答案为:2039【点睛】本题考查了分段函数的应用,由所给式子列举出各个项,即可求和,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,.(2).【解析】

(1)根据诱导公式,二倍角公式,辅助角公式把化为的形式,再根据复合函数单调性求解;(2)先根据变换关系得到函数解析式,所得函数的图象关于轴对称,则时,.【详解】(1)当即时,函数单调递减,所以函数的单调递减区间为.(2)将函数图象上所有点的横坐标缩短为原来的倍,纵坐标不变,然后再向右平移()个单位长度,所得函数为,若图象关于轴对称,则,即,解得,又,则当时,有最小值.【点睛】本题主要考查三角函数的性质和图像的变换.关键在于化为的形式,三角函数的平移变换是易错点.18、(1)不存在;(2)a>﹣2;(3)见解析【解析】

(1)解方程即可判断;(2)由题转化为2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分离参数a=2x﹣2求值域即可求解;(3)由题意判断方程cos(x+1)=cosx+cos1是否有解即可.【详解】(1)若函数有“和一点”,则不合题意故不存在(2)若函数f(x)=2x+a+2x有“和一点”.则方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)证明:令f(x+1)=f(x)+f(1),即cos(x+1)=cosx+cos1,即cosxcos1﹣sinxsin1﹣cosx=cos1,即(cos1﹣1)cosx﹣sinxsin1=cos1,故存在θ,故cos(x+θ)=cos1,即cos(x+θ)=cos1,即cos(x+θ),∵cos21﹣(2﹣2cos1)=cos21+2cos1﹣2<cos22cos22<0,故01,故方程cos(x+1)=cosx+cos1有解,即f(x)=cosx函数有“和一点”.【点睛】本题考查了新定义及分类讨论的思想应用,同时考查了三角函数的化简与应用,转化为有解问题是关键,是中档题19、或【解析】

首先根据三角形面积公式求出角B的正弦值,然后利用平方关系,求出余弦值,再依据余弦定理即可求出.【详解】由得,,所以或,由余弦定理有,,故或,即或.【点睛】本题主要考三角形面积公式、同角三角函数基本关系的应用,以及利用余弦定理解三角形.20、(1);(2)2【解析】

(1)根据向量的数量积定义,结合余弦的倍角公式,即可求得;(2)由余弦定理,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论