2023年四川省乐山四校数学高一第二学期期末检测模拟试题含解析_第1页
2023年四川省乐山四校数学高一第二学期期末检测模拟试题含解析_第2页
2023年四川省乐山四校数学高一第二学期期末检测模拟试题含解析_第3页
2023年四川省乐山四校数学高一第二学期期末检测模拟试题含解析_第4页
2023年四川省乐山四校数学高一第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在中,两直角边,,是内一点,且,设,则()A. B. C.3 D.2.().A. B. C. D.3.直线的倾斜角是()A. B. C. D.4.经过,两点的直线方程为()A. B. C. D.5.已知,则的垂直平分线所在直线方程为()A. B.C. D.6.若实数,满足约束条件则的取值范围为()A. B. C. D.7.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.8.在△ABC中,点D在边BC上,若,则A.+ B.+ C.+ D.+9.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.10.已知直线与平行,则等于()A.或 B.或 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数满足,则的最大值为_______.12.公比为的无穷等比数列满足:,,则实数的取值范围为________.13.方程组对应的增广矩阵为__________.14.在平面直角坐标系中,从五个点:中任取三个,这三点能构成三角形的概率是_______.15.已知关于的不等式的解集为,则__________.16.已知,,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知点,,.(Ⅰ)求的坐标及;(Ⅱ)当实数为何值时,.18.如图.在四棱锥中,,,平面ABCD,且.,,M、N分别为棱PC,PB的中点.(1)证明:A,D,M,N四点共面,且平面ADMN;(2)求直线BD与平面ADMN所成角的正弦值.19.(1)求证:(2)请利用(1)的结论证明:(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:(4)化简:.20.在中,角A、B、C的对边分别为a、b、c,面积为S,已知(Ⅰ)求证:成等差数列;(Ⅱ)若求.21.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分析:建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=60°,设D点坐标为(m,),由平面向量坐标表示,可求出λ和μ.详解:如图以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系,则B点坐标为(1,0),C点坐标为(0,2),因为∠DAB=60°,设D点坐标为(m,),=λ(1,0)+μ(0,2)=(λ,2μ)⇒λ=m,μ=,则.故选A.点睛:本题主要考察平面向量的坐标表示,根据条件建立平面直角坐标系,分别写出各点坐标,属于中档题.2、D【解析】

运用诱导公式进行化简,最后逆用两角和的正弦公式求值即可.【详解】,故本题选D.【点睛】本题考查了正弦的诱导公式,考查了逆用两角和的正弦公式,考查了特殊角的正弦值.3、B【解析】

先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.4、C【解析】

根据题目条件,选择两点式来求直线方程.【详解】由两点式直线方程可得:化简得:故选:C【点睛】本题主要考查了直线方程的求法,还考查了运算求解的能力,属于基础题.5、A【解析】

首先根据题中所给的两个点的坐标,应用中点坐标公式求得线段的中点坐标,利用两点斜率坐标公式求得,利用两直线垂直时斜率的关系,求得其垂直平分线的斜率,利用点斜式写出直线的方程,化简求得结果.【详解】因为,所以其中点坐标是,又,所以的垂直平分线所在直线方程为,即,故选A.【点睛】该题考查的是有关线段的垂直平分线的方程的问题,在解题的过程中,需要明确线段的垂直平分线的关键点一是垂直,二是平分,利用相关公式求得结果.6、A【解析】

的几何意义为点与点所在直线的斜率,根据不等式表示的可行域,可得出取值范围.【详解】的几何意义为点与点所在直线的斜率.画出如图的可行域,当直线经过点时,;当直线经过点时,.的取值范围为,故选A.【点睛】本题考查了不等式表示的可行域的画法,以及目标函数为分式时求取值范围的方法.7、D【解析】

用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.8、C【解析】

根据向量减法和用表示,再根据向量加法用表示.【详解】如图:因为,所以,故选C.【点睛】本题考查向量几何运算的加减法,结合图形求解.9、C【解析】

通过三视图可以判断这一个是半个圆柱与半个圆锥形成的组合体,利用圆柱和圆锥的体积公式可以求出这个组合体的体积.【详解】该几何体为半个圆柱与半个圆锥形成的组合体,故,故选C.【点睛】本题考查了利用三视图求组合体图形的体积,考查了运算能力和空间想象能力.10、C【解析】

由题意可知且,解得.故选.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据约束条件,画出可行域,目标函数可以看成是可行域内的点和的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件可以画出可行域,如下图阴影部分所示,目标函数可以看成是可行域内的点和的连线的斜率,因此可得,当在点时,斜率最大联立,得即所以此时斜率为,故答案为.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.12、【解析】

依据等比数列的定义以及无穷等比数列求和公式,列出方程,即可求出的表达式,再利用求值域的方法求出其范围。【详解】由题意有,即,因为,所以。【点睛】本题主要考查无穷等比数列求和公式的应用以及基本函数求值域的方法。13、【解析】

根据增广矩阵的概念求解即可.【详解】方程组对应的增广矩阵为,故答案为:.【点睛】本题考查增广矩阵的概念,是基础题.14、【解析】

分别算出两点间的距离,共有种,构成三角形的条件为任意两边之和大于第三边,所以在这10种中找出满足条件的即可.【详解】由两点之间的距离公式,得:,,,任取三点有:,共10种,能构成三角形的有:,共6种,所求概率为:.【点睛】构成三角形必须满足任意两边之和大于第三边,则n个点共有个线段,找出满足条件的即可,属于中等难度题目.15、-2【解析】为方程两根,因此16、【解析】

直接利用反三角函数求解角的大小,即可得到答案.【详解】因为,,根据反三角函数的性质,可得.故答案为:.【点睛】本题主要考查了三角方程的解法,以及反三角函数的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)根据点,的坐标即可求出,从而可求出;(Ⅱ)可以求出,根据即可得出,解出即可.【详解】(Ⅰ)∵,,∴∴(Ⅱ)∵,∴.∵∴,∴【点睛】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系.18、(1)证明见解析;(2)【解析】

(1)先证,再证,即可得证;要证平面ADMN,可通过求证PB垂直于ADMN中的两条交线来证明(2)求直线BD与平面ADMN所成角,需要找出BD在平面ADMN的射影,可通过三垂线定理去进行证明【详解】解:(1)证明因为M,N分别为PC,PB的中点,所以;又因为,所以.从而A,D,M,N四点共面;因为平面ABCD,平面ABCD.所以,又因为,,所以平面PAB,从而,因为,且N为PB的中点,所以;又因为,所以平面ADMN;(2)如图,连结DN;由(1)知平面ADMN,所以,DN为直线BD在平面ADMN内的射影,且,所以,即为直线BD与平面ADMN所成的角:在直角梯形ABCD内,过C作于H,则四边形ABCH为矩形;,在中,;所以,,,在中,,,,所以.综上,直线BD与平面ADMN所成角的正弦值为.【点睛】本题考查了线面垂直的判定定理,考查了线面角的求解方法,考查了运算能力及空间想象能力,属于中档题.19、(1)证明见解析,(2)证明见解析,(3),证明见解析(4)【解析】

(1)右边余切化正切后,利用二倍角的正切公式变形可证;(2)将(1)的结果变形为,然后将所证等式的右边的正切化为余切即可得证;(3)根据(1)(2)的规律可得结果;(4)由(3)的结果可得.【详解】(1)证明:因为,所以(2)因为,所以,所以(3)一般地:,证明:因为所以,以此类推得(4).【点睛】本题考查了归纳推理,考查了同角公式,考查了二倍角的正切公式,属于中档题.20、(Ⅰ)详见解析;(Ⅱ)4.【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角兴中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(4)在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.试题解析:(Ⅰ)由正弦定理得:即2分∴即4分∵∴即∴成等差数列.6分(Ⅱ)∵∴8分又10分由(Ⅰ)得:∴12分考点:三角函数与解三角形.21、(1);(2).【解析】试题分析:(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论