2023年青海省西宁第二十一中学数学高一第二学期期末达标检测模拟试题含解析_第1页
2023年青海省西宁第二十一中学数学高一第二学期期末达标检测模拟试题含解析_第2页
2023年青海省西宁第二十一中学数学高一第二学期期末达标检测模拟试题含解析_第3页
2023年青海省西宁第二十一中学数学高一第二学期期末达标检测模拟试题含解析_第4页
2023年青海省西宁第二十一中学数学高一第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.182.已知向量,与的夹角为,则()A.3 B.2 C. D.13.已知a=log0.92019,b=A.a<c<b B.a<b<c C.b<a<c D.b<c<a4.已知角的终边经过点,则A. B. C. D.5.若都是正数,则的最小值为().A.5 B.7 C.9 D.136.在数列中,,则数列的前n项和的最大值是()A.136 B.140 C.144 D.1487.若向量,的夹角为60°,且||=2,||=3,则|2|=()A.2 B.14 C.2 D.88.直线的倾斜角为()A. B. C. D.9.设为数列的前项和,,则的值为()A. B. C. D.不确定10.取一根长度为的绳子,拉直后在任意位置剪断,则剪得两段绳有一段长度不小于的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为.12.在平面直角坐标系中,已知圆:,圆:,动点在直线:上(),过分别作圆,的切线,切点分别为,,若满足的点有且只有一个,则实数的值为______.13.在数列中,是其前项和,若,,则___________.14.展开式中,各项系数之和为,则展开式中的常数项为__________.15.一艘轮船按照北偏西30°的方向以每小时21海里的速度航行,一个灯塔M原来在轮船的北偏东30°的方向,经过40分钟后,测得灯塔在轮船的北偏东75°的方向,则灯塔和轮船原来的距离是_____海里.16.在等比数列中,若,则等于__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组,第2组,第3组,第4组,第5组,其中第1组有6人,得到的频率分布直方图如图所示.(1)求m,n的值,并估计抽取的n名群众中年龄在的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.18.若,解关于的不等式.19.在中,角、、的对边分别为、、,已知.(1)求角的大小;(2)若,点在边上,且,,求边的长.20.在△ABC中,a=3,b−c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.21.如图,三棱柱的侧面是边长为的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图2、C【解析】

由向量的模公式以及数量积公式,即可得到本题答案.【详解】因为向量,与的夹角为,所以.故选:C【点睛】本题主要考查平面向量的模的公式以及数量积公式.3、A【解析】

根据指数函数的单调性以及对数函数的单调性分别判断出a,b,c的取值范围,从而可得结果.【详解】由对数函数的性质可得a=log由指数函数的性质可得b=20190.9>所以a<c<b,故选A.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间-∞,0,4、A【解析】

根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.5、C【解析】

把式子展开,合并同类项,运用基本不等式,可以求出的最小值.【详解】因为都是正数,所以,(当且仅当时取等号),故本题选C.【点睛】本题考查了基本不等式的应用,考查了数学运算能力.6、C【解析】

可得数列为等差数列且前8项为正数,第9项为0,从第10项开始为负数,可得前8或9项和最大,由求和公式计算可得.【详解】解:∵在数列中,,

,即数列为公差为−4的等差数列,

令可得,

∴递减的等差数列中前8项为正数,第9项为0,从第10项开始为负数,

∴数列的前8或9项和最大,

由求和公式可得

故选:C.【点睛】本题考查等差数列的求和公式和等差数列的判定,属基础题.7、A【解析】

由已知可得||,根据数量积公式求解即可.【详解】||.故选A.【点睛】本题考查平面向量数量积的性质及运算,考查了利用数量积进行向量模的运算求解方法,属于基础题.8、C【解析】

求出直线的斜率,然后求解直线的倾斜角.【详解】由题意知,直线的斜率为,所以直线的倾斜角为.故选:C.【点睛】本题考查直线的斜率与倾斜角的求法,属于基础题.9、C【解析】

令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.10、A【解析】

设其中一段的长度为,可得出另一段长度为,根据题意得出的取值范围,再利用几何概型的概率公式可得出所求事件的概率.【详解】设其中一段的长度为,可得出另一段长度为,由于剪得两段绳有一段长度不小于,则或,可得或.由于,所以,或.由几何概型的概率公式可知,事件“剪得两段绳有一段长度不小于”的概率为,故选:A.【点睛】本题考查长度型几何概型概率公式的应用,解题时要将问题转化为区间型的几何概型来计算概率,考查分析问题以及运算求解能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,MN,OB,∴MNOB,∴MN0B是平行四边形,∴BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案为.考点:异面直线及其所成的角.12、.【解析】

根据圆的切线的性质和三角形全等,得到,求得点的轨迹方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求解.【详解】由题意得:,,设,如下图所示∵PA、PB分别是圆O,O1的切线,∴∠PBO1=∠PAO=90°,又∵PB=2PA,BO1=2AO,∴△PBO1∽△PAO,∴,∴,∴,整理得,∴点P(x,y)的轨迹是以为圆心、半径等于的圆,∵动点P在直线:上(),满足PB=2PA的点P有且只有一个,∴该直线l与圆相切,∴圆心到直线l的距离d满足,即,解得或,又因为,所以.【点睛】本题主要考查了圆的切线的性质,以及直线与圆的位置关系的应用,其中解答中根据圆的切下的性质和三角形全等求得点的轨迹方程,再根据直线与圆相切,列出方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.13、【解析】

令,可求出的值,令,由可求出的表达式,再检验是否符合时的表达式,由此可得出数列的通项公式.【详解】当时,;当时,.不适合上式,因此,.故答案为:.【点睛】本题考查利用求数列的通项公式,一般利用,求解时还应对是否满足的表达式进行验证,考查运算求解能力,属于中等题.14、【解析】令,则,即,因为的展开式的通项为,所以展开式中常数项为,即常数项为.点睛:本题考查二项式定理;求二项展开式的各项系数的和往往利用赋值法(常赋值为),还要注意整体赋值,且要注意展开式各项系数和二项式系数的区别.15、【解析】

画出示意图,利用正弦定理求解即可.【详解】如图所示:为灯塔,为轮船,,则在中有:,且海里,则解得:海里.【点睛】本题考查解三角形的实际应用,难度较易.关键是能通过题意将航海问题的示意图画出,然后选用正余弦定理去分析问题.16、【解析】

由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,年龄在的人数为(2)【解析】

(1)根据第一组的频数和频率可得,由所有频率和为1可得,再求得间的频率后可得人数;(2)把第一组人数编号,如男性为,女性为,然后用列举法写出任取3人的所有基本事件及至少有两名女生的基本事件,计数后可得所求概率.【详解】(1),设第2组的频率为f,,所以,第3组和第4组的频率为,年龄在的人数为;(2)记第1组中的男性为,女性为,随机抽取3名群众的基本事件是:,,共20种;其中至少有两名女性的基本事件是:共16种.所以至少有两名女性的概率为.【点睛】本题考查频率分布直方图,考查古典概型.解题关键是掌握性质:频率分布直方图中所有频率(小矩形面积)之和为1.18、当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为;当a=0时,原不等式的解集为⌀.【解析】

试题分析:(1),利用,可得,分三种情况对讨论的范围:0<a<1,a<0,a=0,分别求得相应情况下的解集即可.试题解析:不等式>1可化为>0.因为a<1,所以a-1<0,故原不等式可化为<0.故当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为,当a=0时,原不等式的解集为⌀.19、(1);(2).【解析】

(1)利用正弦定理边角互化思想以及两角和的正弦公式可求出的值,结合角的范围可得出角的大小;(2)利用余弦定理得出,由三角形的面积公式,代入数据得出,将该等式代入等式可解出边的长.【详解】(1)由及正弦定理,可得,即,由可得,所以,因为,,所以,,;(2)由于,由余弦定理得,又因为,所以的面积,把,,代入得,所以,解得.【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了余弦定理和三角形面积公式来解三角形,解题时要根据题中相关条件列方程组进行求解,考查方程思想的应用以及运算求解能力,属于中等题.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题意列出关于a,b,c的方程组,求解方程组即可确定b,c的值;(Ⅱ)由题意结合正弦定理和两角和差正余弦公式可得的值.【详解】(Ⅰ)由题意可得:,解得:.(Ⅱ)由同角三角函数基本关系可得:,结合正弦定理可得:,很明显角C为锐角,故,故.【点睛】本题主要考查余弦定理、正弦定理的应用,两角和差正余弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.21、(1)见解析(2)【解析】

(1)利用直线与平面垂直的判定,结合三角形全等判定,得到,再次结合三角形全等,即可.(2)法一:建立坐标系,分别计算的法向量,结合两向量夹角为直角,计算出的值,然后结合,即可.法二:设出OA=x,用x分别表示AB,BD,AD,结合,建立方程,计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论