版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点是直线上一动点、是圆的两条切线,、是切点,若四边形的最小面积是,则的值为()A. B. C. D.2.已知三条相交于一点的线段两两垂直且在同一平面内,在平面外、平面于,则垂足是的()A.内心 B.外心 C.重心 D.垂心3.角的终边经过点且,则的值为()A.-3 B.3 C.±3 D.54.等差数列an的公差d<0,且a12=a212,则数列aA.9 B.10 C.10和11 D.11和125.已知三个内角、、的对边分别是,若则的面积等于()A. B. C. D.6.在锐角中,内角,,的对边分别为,,,,,成等差数列,,则的周长的取值范围为()A. B. C. D.7.正项等比数列的前项和为,若,,则公比()A.4 B.3 C.2 D.18.已知数列,满足,若,则()A. B. C. D.9.已知数列是等比数列,若,且公比,则实数的取值范围是()A. B. C. D.10.如果,那么下列不等式错误的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,正方体的棱长为2,点在正方形的边界及其内部运动,平面区域由所有满足的点组成,则的面积是__________.12.设为数列的前项和,若,则数列的通项公式为__________.13.已知,,两圆和只有一条公切线,则的最小值为________14.已知角α的终边与单位圆交于点.则___________.15.函数的最小正周期为______________.16.点从点出发,沿单位圆顺时针方向运动弧长到达点,则点的坐标为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列前n项和满足(1)求数列的通项公式;(2)求数列的前n项和.18.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.19.在中,内角,,的对边分别为,,,已知,.(Ⅰ)求的值;(Ⅱ)若,求边的值.20.已知圆(为坐标原点),直线.(1)过直线上任意一点作圆的两条切线,切点分别为,求四边形面积的最小值.(2)过点的直线分别与圆交于点(不与重合),若,试问直线是否过定点?并说明理由.21.已知的顶点,边上的高所在的直线方程为,为的中点,且所在的直线方程为.(1)求顶点的坐标;(2)求过点且在轴、轴上的截距相等的直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
作出图形,可知,由四边形的最小面积是,可知此时取最小值,由勾股定理可知的最小值为,即圆心到直线的距离为,结合点到直线的距离公式可求出的值.【详解】如下图所示,由切线长定理可得,又,,且,,所以,四边形的面积为面积的两倍,圆的标准方程为,圆心为,半径为,四边形的最小面积是,所以,面积的最小值为,又,,由勾股定理,当直线与直线垂直时,取最小值,即,整理得,,解得.故选:D.【点睛】本题考查由四边形面积的最值求参数的值,涉及直线与圆的位置关系的应用,解题的关键就是确定动点的位置,考查分析问题和解决问题的能力,属于中等题.2、D【解析】
根据题意,结合线线垂直推证线面垂直,以及根据线面垂直推证线线垂直,即可求解。【详解】连接BH,延长BH与AC相交于E,连接AH,延长AH交BC于D,作图如下:因为,故平面PBC,又平面PBC,故;因为平面ABC,平面ABC,故;又平面PAH,平面PAH故平面PAH,又平面PAH,故,即;同理可得:,又BE与AD交于点H,故H点为的垂心.故选:D.【点睛】本题考查线线垂直与线面垂直之间的相互转化,属综合中档题.3、B【解析】
根据三角函数的定义建立方程关系即可.【详解】因为角的终边经过点且,所以则解得【点睛】本题主要考查三角函数的定义的应用,应注意求出的b为正值.4、C【解析】
利用等差数列性质得到a11=0,再判断S10【详解】等差数列an的公差d<0,且a根据正负关系:S10或S故答案选C【点睛】本题考查了等差数列的性质,Sn的最大值,将Sn的最大值转化为5、B【解析】
根据三角的面积公式求解.【详解】,故选.【点睛】本题考查三角形的面积计算.三角形有两个面积公式:和,选择合适的进行计算.6、A【解析】
依题意求出,由正弦定理可得,再根据角的范围,可求出的范围,即可求得的周长的取值范围.【详解】依题可知,,由,可得,所以,即,而.∴,即.故的周长的取值范围为.故选:A.【点睛】本题主要考查正弦定理在解三角形中的应用,两角和与差的正弦公式的应用,以及三角函数的值域求法的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7、C【解析】
由及等比数列的通项公式列出关于q的方程即可得求解.【详解】,即有,解得或,又为正项等比数列,故选:C【点睛】本题考查等比数列的通项公式及前n项和,属于基础题.8、C【解析】
利用递推公式计算出数列的前几项,找出数列的周期,然后利用周期性求出的值.【详解】,且,,,,所以,,则数列是以为周期的周期数列,.故选:C.【点睛】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.9、C【解析】
由可得,结合可得结果.【详解】,,,,,,故选C.【点睛】本题主要考查等比数列的通项公式,意在考查对基础知识的掌握与应用,属于基础题.10、A【解析】
利用不等式的性质或比较法对各选项中不等式的正误进行判断.【详解】,,,则,,可得出,因此,A选项错误,故选:A.【点睛】本题考查判断不等式的正误,常利用不等式的性质或比较法来进行判断,考查推理能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,所以点平面区域是底面内以为圆心,以1为半径的外面区域,则的面积是12、,【解析】
令时,求出,再令时,求出的值,再检验的值是否符合,由此得出数列的通项公式.【详解】当时,,当时,,不合适上式,当时,,不合适上式,因此,,.故答案为,.【点睛】本题考查利用前项和求数列的通项,考查计算能力,属于中等题.13、9【解析】
两圆只有一条公切线,可以判断两圆是内切关系,可以得到一个等式,结合这个等式,可以求出的最小值.【详解】,圆心为,半径为2;,圆心为,半径为1.因为两圆只有一条公切线,所以两圆是内切关系,即,于是有(当且仅当取等号),因此的最小值为9.【点睛】本题考查了圆与圆的位置关系,考查了基本不等式的应用,考查了数学运算能力.14、【解析】
直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】
利用函数y=Atan(ωx+φ)的周期为,得出结论.【详解】函数y=3tan(3x)的最小正周期是,故答案为:.【点睛】本题主要考查函数y=Atan(ωx+φ)的周期性,利用了函数y=Atan(ωx+φ)的周期为.16、【解析】
由题意可得OQ恰好是角的终边,利用任意角的三角函数的定义,求得Q点的坐标.【详解】点P从点出发,沿单位圆顺时针方向运动弧长到达Q点,则OQ恰好是角的终边,故Q点的横坐标,纵坐标为,故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用当时,,当时,即可求解(2)由裂项相消求解即可【详解】(1)当时,,当时,.所以可得.(2)由题意知,可设则.【点睛】本题考查数列通项公式的求解,考查裂项相消求和,注意相消时提出系数和剩余项数,是中档题18、(1)(2)【解析】
(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【点睛】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.19、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用,,然后用正弦定理求解即可(Ⅱ)利用,然后利用余弦定理求解即可【详解】(Ⅰ)在中,由正弦定理,及,,可得.(Ⅱ)由及,可得,由余弦定理,即,可得.【点睛】本题考查正弦以及余弦定理的应用,属于基础题20、(1)12;(2)过定点,理由见解析【解析】
(1)由,得过点的切线长,所以四边形的面积为,即可得到本题答案;(2)设直线的方程为,则直线的方程为.联立方程,消去,整理得,得,,所以,令,即可得到本题答案.【详解】(1)由题意可得圆心到直线的距离为,从而,则过点的切线长.故四边形的面积为,即四边形面积的最小值为12.(2)因为,所以直线与直线的斜率都存在,且不为0.设直线的方程为,则直线的方程为.联立方程,消去,整理得解得或,则.同理可得.所以.令,得,解得.取,可以证得,所以直线过定点.当时,轴,易知与均为正三角形,直线的方程为,也过定点.综上,直线过定点.【点睛】本题主要考查与椭圆相关的四边形面积的范围问题以及与椭圆有关的直线过定点问题,联立直线方程与椭圆方程,利用韦达定理是解决此类问题的常用方法.21、(1)(2)或【解析】
(1)首先确定直线的斜率,从而得到直线的方程;因为点是直线与的交点,联立两条直线可求得点坐标;(2)设,利用中点坐标公式表示出;根据在直线上,在直线上,可构造方程组,求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 27701:2025 EN Information security,cybersecurity and privacy protection - Privacy information management systems - Requirements and guidance
- 【正版授权】 ISO/IEC 27706:2025 FR Information security,cybersecurity and privacy protection - Requirements for bodies providing audit and certification of privacy information managemen
- 产前健康宣教要点
- 初中课内文言翻译方法
- 提高入院宣教知晓率品管圈活动
- 班组长如何对员工开展培训
- 2025版抑郁症常见症状及护理方案
- 2025-2026学年北京市丰台区高一物理上册期中考试试卷及答案
- 2025-2026学年安徽省池州市四年级英语上册期中考试试卷及答案
- 万豪协议书价酒店
- 2025至2030中国工业PC(IPC)行业产业运行态势及投资规划深度研究报告
- 二+《简单相信傻傻坚持》(教学设计)-【中职专用】高二语文上(高教版2023职业模块)
- (2025)入党积极分子培训考试试题及答案
- 厂区内巡查管理制度
- 研学基地委托运行协议书
- T/CSBME 056.1-2022血液透析器用中空纤维原料第1部分:聚砜
- 软件开发过程中质量通病防治措施
- 2025中级电子商务师资格考试题库及答案(浓缩400题)
- LNG设备管理制度
- 广东省农村信用社联合社招聘考试真题2024
- 超星尔雅学习通《中国近现代史纲要(首都师范大学)》2025章节测试附答案3
评论
0/150
提交评论