版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省遵义市仁怀市九仓镇九仓中学2022年高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中最小正周期为的是
(
)A
B
C
D参考答案:B略2.函数的定义域为A.
B.
C.
D.参考答案:A3.已知是三条不同的直线,是两个不同的平面,下列命题为真命题的是(
)A.若,,,,则B.若,∥,,则C.若∥,,则∥D.若,,,则∥参考答案:B4.在△中,若,则等于(
)A.
B.
C.
D.参考答案:D
解析:或5.如果关于x的不等式(a-1)x2+2(a-1)x-4<0对一切实数x恒成立,则实数a的取值范围是
(
)
(A)
(B)
(C)
(D)(-3,1)参考答案:C略6.已知f(x)是偶函数,x∈R,当x>0时,f(x)为增函数,若x1<0,x2>0,且|x1|<|x2|,则()A.f(﹣x1)>f(﹣x2) B.f(﹣x1)<f(﹣x2) C.﹣f(x1)>f(﹣x2) D.﹣f(x1)<f(﹣x2)参考答案:B【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:∵f(x)是偶函数,x∈R,当x>0时,f(x)为增函数,且|x1|<|x2|,∴f(|x1|)<f(|x2|),则f(﹣x1)<f(﹣x2)成立,故选:B7.若、都是等差数列,且=5,=15,=100,则数列的前100项之和等于:
(
)
A、600
B、5050
C、6000
D、60000
参考答案:C略8.(5分)下列函数中,在其定义域上既是奇函数又是增函数的是() A. y=x2 B. y=x﹣1 C. y=x D. y=x3参考答案:D考点: 函数单调性的判断与证明;函数奇偶性的判断.专题: 函数的性质及应用.分析: 根据奇函数、偶函数的定义,奇偶函数定义域的特点,反比例函数在其定义域上的单调性,以及单调性的定义即可找出正确选项.解答: 解:y=x2是偶函数;反比例函数y=x﹣1在其定义域上没有单调性;的定义域为[0,+∞),不关于原点对称,所以是非奇非偶函数;y=x3是奇函数,根据单调性的定义知该函数在其定义域上是增函数;∴D正确.故选D.点评: 考查奇函数、偶函数的定义,奇偶函数定义域的特点,函数单调性的定义,以及反比例函数在其定义域上的单调性.9.若函数的图象向左平移个单位长度后,得到函数的图象,下列关于函数的说法中,不正确的是(
)A.函数的图象关于直线对称B.函数的图象关于点对称C.函数的单调递增区间为D.函数是奇函数参考答案:C10.已知角的终边经过点(-3,-4),则的值为(
)A.
B.
C.
D.
参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.用二分法求方程在区间上零点的近似值,先取区间中点,则下一个含根的区间是__________.参考答案:略12.已知函数的图象过点(2,),则=_______________.参考答案:3略13.已知函数,则满足的的取值范围是________.
参考答案:14.集合可用描述法表示为_________.参考答案:略15..若,且,则的值为
.参考答案:16.函数f(x)=,则f[f(﹣2)]=
;若f(x0)<3,则x0的取值范围是
.参考答案:2,(﹣2,7).【考点】函数的值.【分析】由已知得f(﹣2)=2﹣(﹣2)﹣1=3,从而f[f(﹣2)]=f(3),由此能求出f[f(﹣2)]的值;由f(x0)<3,得到:当x0>0时,f(x0)=log2(x0+1)<3;当x0≤0时,f(x0)=﹣1<3.由此能求出x0的取值范围.【解答】解:∵函数f(x)=,∴f(﹣2)=2﹣(﹣2)﹣1=3,f[f(﹣2)]=f(3)=log24=2.∵f(x0)<3,∴当x0>0时,f(x0)=log2(x0+1)<3,解得0<x0<7;当x0≤0时,f(x0)=﹣1<3,解得﹣2<x0≤0.综上,x0的取值范围是(﹣2,7).故答案为:2,(﹣2,7).17.在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.参考答案:2+【考点】余弦定理.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD?BDcos135°AC2=CD2+AD2﹣2AD?CDcos45°即AB2=BD2+2+2BD
①AC2=CD2+2﹣2CD
②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为
AC=AB所以由(3)得2AB2=4BD2+2﹣4BD
(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(15分)已知扇形的周长为30,当它的半径R和圆心角α各取何值时,扇形的面积S最大?并求出扇形面积的最大值.参考答案:考点: 扇形面积公式;弧长公式.专题: 三角函数的求值.分析: 首先,首先,设扇形的弧长,然后,建立关系式,求解S=lR=﹣R2+15R,结合二次函数的图象与性质求解最值即可.解答: 设扇形的弧长为l,∵l+2R=30,∴S=lR=(30﹣2R)R=﹣R2+15R=﹣(R﹣)2+,∴当R=时,扇形有最大面积,此时l=30﹣2R=15,α==2,答:当扇形半径为,圆心角为2时,扇形有最大面积.点评: 本题重点考查了扇形的面积公式、弧长公式、二次函数的最值等知识,属于基础题.19.已知圆满足:①截轴所得弦长为;②被轴分成两段圆弧,其弧长的比为;③圆心到直线:的距离为的圆的方程。
参考答案:已知圆满足:①截轴所得弦长为;②被轴分成两段圆弧,其弧长的比
略20.已知函数,其中.(1)当时,求f(x)的最小值;(2)设函数f(x)恰有两个零点,且,求a的取值范围.参考答案:(1)-14;(2)【分析】(1)当时,利用指数函数和二次函数的图象与性质,得到函数的单调性,即可求得函数的最小值;(2)分段讨论讨论函数在相应的区间内的根的个数,函数在时,至多有一个零点,函数在时,可能仅有一个零点,可能有两个零点,分别求出的取值范围,可得解.【详解】(1)当时,函数,当时,,由指数函数的性质,可得函数在上为增函数,且;当时,,由二次函数的性质,可得函数在上为减函数,在上为增函数,又由函数,当时,函数取得最小值为;故当时,最小值为.(2)因为函数恰有两个零点,所以(ⅰ)当时,函数有一个零点,令得,因为时,,所以时,函数有一个零点,设零点为且,此时需函数在时也恰有一个零点,令,即,得,令,设,,因为,所以,,,当时,,所以,即,所以在上单调递增;当时,,所以,即,所以在上单调递减;而当时,,又时,,所以要使在时恰有一个零点,则需,要使函数恰有两个零点,且,设在时的零点为,则需,而当时,,所以当时,函数恰有两个零点,并且满足;(ⅱ)若当时,函数没有零点,函数在恰有两个零点,且满足,也符合题意,而由(ⅰ)可得,要使当时,函数没有零点,则,要使函数在恰有两个零点,则,但不能满足,所以没有的范围满足当时,函数没有零点,函数在恰有两个零点,且满足,综上可得:实数的取值范围为.故得解.【点睛】本题主要考查了指数函数与二次函数的图象与性质的应用,以及函数与方程,函数的零点问题的综合应用,属于难度题,关键在于分析分段函数在相应的区间内的单调性,以及其图像趋势,可运用数形结合方便求解,注意在讨论二次函数的根的情况时的定义域对其的影响.21.已知函数f(x)=x+.(1)判断f(x)在(2,+∞)上的单调性并用定义证明;(2)求f(x)在[1,4]的最大值和最小值,及其对应的x的取值.参考答案:【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】计算题;证明题.【分析】(1)在给定区间内任取两数x1,x2,只需判断f(x1)﹣f(x2)与0的大小就行;(2)由函数的单调性,即可求出最小值与最大值.【解答】解:(1)任取x1,x2∈(2,+∞),且x1<x2,f(x1)﹣f(x2)==,∵x1<x2,∴且x1﹣x2<0,且x1,x2∈(2,+∞),∴x1x2﹣4>0∴f(x1)﹣f(x2)<0,∴f(x)在(2,+∞)上的单调递增;(2)任取x1,x2∈(1,2)且x1<x2,f(x1)﹣f(x2)==,∵x1<x2,∴且x1﹣x2<0,且x1,x2∈(1,2),∴x1x2﹣4<0,∴f(x1)﹣f(x2)>0,∴f(x)在(1,2)上的单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏南通苏锡通科技产业园区招商服务有限公司招聘20人笔试参考题库附带答案详解
- 养老院老人请假外出审批制度
- 2026年公文写作与处理规范试题含答案
- 以梦想为主题的演讲稿呈现(6篇)
- 投资风险合规管理承诺书5篇范文
- 动物世界的团队合作哲理作文6篇
- 农业种植质量改进承诺函5篇
- 社区信息采集员制度规范
- 学校合法规范收费制度
- 小学规范办学责任制度
- 2025届上海市上海师大附中生物高二上期末达标检测模拟试题含解析
- 医院护理人文关怀实践规范专家共识
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 三亚崖州湾科技城南海资源保护开发与利用产业创新平台 环评报告
- 16 ADCampus解决方案微分段技术白皮书1.0
- 南邮模式识别复习提纲(整理)
- 中国古代传统节日与民俗文化
- 设备设施风险分级管控清单
- 河南交通职业技术学院教师招聘考试历年真题
- 污水管网工程监理规划修改
- (机构动态仿真设计)adams
评论
0/150
提交评论