-实际问题与反比例函数课件-(高效课堂)获奖-人教数学22-_第1页
-实际问题与反比例函数课件-(高效课堂)获奖-人教数学22-_第2页
-实际问题与反比例函数课件-(高效课堂)获奖-人教数学22-_第3页
-实际问题与反比例函数课件-(高效课堂)获奖-人教数学22-_第4页
-实际问题与反比例函数课件-(高效课堂)获奖-人教数学22-_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二十六章反比例函数26.2实际问题与反比例函数(1)

某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地。为安全迅速通过这片湿地,他们沿着前进路线铺垫了若干木板,构筑成一条临时通道,从而顺利完成任务。

问题情景

当人和木板对湿地的压力一定时,随着木板面积S(㎡)的变化,人和木板对地面的压强P(Pa)将随着变化。如果人和木板对湿地地面的压力合计为600N,那么:

1.当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?2.如果人和木板反湿地的压力合计600N,那么P是S的反比例函数吗?为什么?3.如果人和木板对湿地的压力合计为600N,那么当木板面积为时,压强是多少?

问题情景压强=例1:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?解:(1)根据圆柱体的体积公式,我们有

s×d=104变形得:即储存室的底面积S是其深度d的反比例函数.dS解:(2)把S=500代入,得:

答:如果把储存室的底面积定为500,施工时应向地下掘进20m深.(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?解得:解:(3)根据题意,把d=15代入,得:

解得:答:当储存室的深为15m时,储存室的底面积应改为666.67才能满足需要.(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?

实际问题

(数学模型)

当S=500m2时求d

当d=15m时求S小结拓展圆柱体的体积公式永远也不会变

例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5000m3,那么水池中的水将要多少小时排完?

随堂练习1(1)已知某矩形的面积为20cm2,写出其长y与宽x之间的函数表达式;(2)当矩形的长为12cm是,求宽为多少?当矩形的宽为4cm,其长为多少?(3)如果要求矩形的长不小于8cm,其宽至多要多少?1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空.(1)蓄水池的容积是多少?解:蓄水池的容积为:8×6=48(m3).(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?答:此时所需时间t(h)将减少.(3)写出t与Q之间的函数关系式;解:t与Q之间的函数关系式为:你一定能够解答想一想:1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空.解:当t=5h时3.所以每时的排水量至少为3.(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?解:当Q=12(m3)时,t=48/12=4(h).所以最少需4h可将满池水全部排空.(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?

码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?

分析:根据装货速度×装货时间=货物的总量,可以求出轮船装载货物的的总量;再根据卸货速度=货物总量÷卸货时间,得到v与t的函数式。

探究活动2:

码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?

探究活动2:

解:(1)设轮船上的货物总量为k吨,则根据已知条件有k=30×8=240

所以v与t的函数式为

结果可以看出,如果全部货物恰好用5天卸完,则平均每天卸载48吨.

探究活动2:

码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(2)由于遇到紧急情况,船上的货物必须在5日内卸载完毕,那么平均每天要卸多少吨货物?

解:(2)把t=5代入,得学习小结

你能谈谈学习这节课内容后的收获和体会吗?

实际问题反比例函数建立数学模型运用数学知识解决1、利用反比例函数解决实际问题的关键:建立反比例函数模型.抓住题目中的不变量。2、体会反比例函数是现实生活中的重要数学模型.认识数学在生活实践中意义.

1.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x元与日销售量y之间有如下关系:(1)根据表中的数据在平面直角坐标系中描出实数对(x,y)的对应点.(2)猜测并确定y与x之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为w元,试求出w与x之间的函数关系式,若物价局规定此贺卡的销售价最高不能超过10元/个,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?X(元)3456Y(个)20151210练习

2.一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则经过6小时可达到乙地.(1)甲、乙两地相距多少千米?(2)如果汽车把速度提高到v(千米/时),那么从甲地到乙地所用时间t(小时)将怎样变化?(3)写出t与v之间的函数关系式;(4)因某种原因,这辆汽车需在5小时内从乙地到甲地,则此汽车的平均速度至少应是多少?(5)已知汽车的平均速度最大可达80千米/时,那么它从甲地到乙地最快需要多长时间?

轴对称

引言

对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!引出新知探索新知问题1如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?

追问

你能举出一些轴对称图形的例子吗?

探索新知如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.

共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.

探索新知问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?追问1你能再举出一些两个图形成轴对称的例子吗?探索新知把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

两者的区别:

轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.探索新知追问2你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?

两者的联系:

把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.

探索新知追问2你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?追问1你能说明其中的道理吗?

探索新知问题3如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C

的对称点,线段AA′,BB′,CC′与直线MN有什么关系?ABCMNPA′B′C′探索新知追问2上面的问题说明“如果△ABC和△A′B′C′关于直线MN对称,那么,直线MN垂直线段AA′,BB′和CC′,并且直线MN还平分线段AA′,BB′和CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?

ABCMNPA′B′C′经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.

探索新知问题3如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C

的对称点,线段AA′,BB′,CC′与直线MN有什么关系?ABCMNPA′B′C′探索新知追问3你能用数学语言概括前面的结论吗?

成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点所连线段.ABCMNPA′B′C′

结论:直线l垂直线段AA′,BB′,直线l平分线段AA′,BB′(或直线l是线段AA′,BB′的垂直平分线).探索新知问题4下图是一个轴对称图形,你能发现什么结论?能说明理由吗?

ABlA′B′追问你能用数学语言概括前面的结论吗?探索新知问题4下图是一个轴对称图形,你能发现什么结论?能说明理由吗?

ABlA′B′

轴对称图形的性质:

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.

探索新知问题4下图是一个轴对称图形,你能发现什么结论?能说明理由吗?

ABlA′B′课

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论