线性系统理论第二章课件_第1页
线性系统理论第二章课件_第2页
线性系统理论第二章课件_第3页
线性系统理论第二章课件_第4页
线性系统理论第二章课件_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

LinearSystemTheoryLecture1IntroductionContentsIntroductiontocontrolDevelopmentofcontroltheoryStepstodesigncontrolMathematicalmodelofsystemHowtobuildmathematicalmodelofasystemRelationofdifferentmodelsBackgroundknowledgeMilestonesindevelopmentofControlTheoryClassicalControlTheory:Before1950’s.CharacterizedbyTransferFunctionanalysismethod.Notverygoodformulti-variableorlarge-scalesystemRootLocus,FrequencyResponsemethodsareextensivelyusedVerymuchdependentondesignexperienceMilestonesindevelopmentofControlTheoryModernControlTheory:After1960’s.Characterizedbystatevariableanalysismethod.Verygoodformulti-variableorlarge-scalesystem,andcanbeeasilyextendedtotime-variablesystemorevennon-linearsystemSystematicmethodsaredevelopedtoanalyzethecontrollability,observabilityandstabilityPerformancecanbeclearlyspecifiedandanalyticalmethodsaredevelopedtoaccomplishthedesignMilestonesindevelopmentofControlTheoryLarge-scaleSystemTheoryandIntelligentControlAfter1970’sProposedfordealingwithlarge-scale,complex,andhierarchicalcontroloflargesystem.Highlyintelligent,adaptiveandrobustControlExamplesFlyingballcontrolboilerManualcontrolfluidControlExamplesBoiler-generatorControlControlExamplesPowerGenerationControlModelingofphysicalsystemVerificationSimulation/VisualizationValidationAcontrolmodelRoughlyspeaking,controlsystemdesigndealswiththeproblemofmakingaconcretephysicalsystembehaveaccordingtodesiredspecificationsOpen-loopcontrolClosed-loopcontrolDefinitionof“system”Definition:Literally:agrouporcombinationofinterrelated,interdependent,orinteractingelementsformingacollectiveentity;amethodicalorcoordinatedassemblageofparts,facts,concepts,etc.Here:Mathematicaldescriptionofarelationshipbetweenexternallysuppliedquantities(I.e.,thosecomingfromoutsideofthesystem)andthedependentquantitiesthatresultfromtheactionoreffectonthoseexternalquantitiesSystemisdescribedby“model”,whichisagroupofdifferentialequations(partialorordinary),oralgebraicequationsconcerningrelevantvariablesWhyweneedtostudyasystem?Becausewewanttocontrolit.Whatiscontrol?Roughlyspeaking,controlistomakeasystembehavelikewedesire.EssentialelementsSometermsSISO:Single-Input-Single-OutputMIMO:Multiple-Input-Multiple-OutputSIMO:MISO:Someterms--MemoryAsystemwithmemoryisonewhoseoutputdependsonitselffromanearlierpointintime;E.g.,CapacitorC,InductorLAmemorylesssystemisonewhoseoutputdependsonlyonthecurrenttimeandcurrentinput.E.g.,ResistorRSometerms--CausalityAsystemissaidtobecausalifthevalueoftheoutputattimet0dependsonthevaluesoftheinputandoutputforallt0uptot0,i.e.,t<=t0EverypracticalsystemiscausalForeasyunderstanding,thismeansthatwecannotuseanywaytochangewhathavealreadyhappened.Someterms—statevariableStateVariable:asetofvariablesthatdefinethesystemresponse.Oncetheinitialconditionsaregiven,thedifferentialequationscompletelycharacterizeanychosenoutputfunctionfromtheinitialtimeforanyadmissibleinputfunction.Vc,IL:statevariableVR,IL:notstatevariableSometerms—LumpednessLumpedness:AsystemissaidtobelumpedifitsnumberofstatevariableisfiniteLimitedstatevariablesInfinitestatevariablesSometerms--TimeInvarianceTimeInvariance:Atime-invariantsystemisonewhoseoutputdependsonlyonthedifferencebetweentheinitialtimeandthecurrenttime,y=y(t-t0).Otherwise,thesystemistime-variantForyoureasyunderstanding,TImeanstheresponseofasystemisindependentofthetimewhenanexcitationisapplied.Timeinvarianceisamathematicalfiction.Noman-madeelectronicsystemistimeinvariantinthestrictsense.y(t)=(H(x))(t)y(t-)=(H(x))(t-)y(t-)=(H(x,))(t-)Someterms--LinearityLinearity:Asystemislinearifitsatisfiesthesuperpositionproperty,i.e.,Theoutputofasystemtotheinputf(t)

isy(t)=Prove,orgiveanexampleastowhetherthesystemis:A.LinearB.CausalC.TimeinvariantSometermsZero-stateresponseOutputexcitedexclusivelybytheinputZero-inputresponseOutputexcitedexclusivelybytheinitialstateSuperpositionpropertyoflinearsystemForalinearsystem,Response=zero-inputresponse+zero-stateresponseTherefore,theoverallresponsecanbedecomposedandstudiedseparatelyLinearizationofnon-linearsystemTaylorserieslinearizationFormultivariablecase,MathematicaldescriptionofasystemMathematicaldescriptionofasystemInput-outputDescription:ForacausalsystemMathematicaldescriptionFormultivariablecase,theGisamatrix,Where,Mathematicaldescription—transferfunctionContinuoussystemDiscretesystemZero-pole:Mathematicaldescription----StatespacemodelEverylinearlumpedsystemcanbedescribedbyasetofstateequation,ForaLinearTimeInvariant(LTI)system,thetransferfunctionsatisfiestimeshiftingproperty,i.e.,Mathematicaldescription----StatespacemodelHencethestateequationhastheform,(constantcoefficients)LaplaceTransformDefinition:AfterLaplacetransformation,asystemcanbedescribed,Expamplestextexample2.2,2.3,2.4,2.5PropertiesofpolynomialLaplacetransformtransfersatransferfunction(ofalumpedsystem)intoafractionoftwopolynomials

issaidtobeproperifissaidtobestrictlyproperifisbiproperifisimproperifZeroesandpolesArationaltransferfunctioncanbedecomposedintoaformlike,ziandzjarenotnecessarilydifferentand,thereforeziisazeroofpiandpjarenotnecessarilydifferentand,thereforepiisapoleofLaplacetransformofstatespaceequationForanLTIsystem,ItsLaplacetransformis,Solveand,Relationshipbetweeninput-outputandstatespacedescriptionHence,forarelaxedsystem(x(0)=0),Therefore,thetransferfunction,HowtobuildamodelofasystemAllmodelsarewrong,butsomemodelsareuseful----G.E.BoxCasestudy:howtomodelasystemFreebodymotionandNewton’slaw:StatevariablemodelPhysicalmodelMathematicalmodelStatevariableinputoutputTransferfunctionmodelSimulation(stepresponse)M1=1kgM2=0.5kgk=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论