上海市嘉定区马陆中学高三数学文下学期期末试卷含解析_第1页
上海市嘉定区马陆中学高三数学文下学期期末试卷含解析_第2页
上海市嘉定区马陆中学高三数学文下学期期末试卷含解析_第3页
上海市嘉定区马陆中学高三数学文下学期期末试卷含解析_第4页
上海市嘉定区马陆中学高三数学文下学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市嘉定区马陆中学高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知定义在区间上的函数的图象如图所示,则的图象为(

参考答案:B2.如图是一个几何体的三视图,则该几何体的体积是() A.54 B. 27 C. 18 D. 9参考答案:解:由几何体的三视图可知,这是一个四棱锥,且底面为矩形,长6,宽3;体高为3.则=18.故选:C.点评: 做三视图相关的题时,先要形成直观图,后要注意量的关系.属于基础题.3.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如下列联表:班级与成绩列联表

优秀不优秀总计甲班113445乙班83745总计197190则随机变量的观测值约为()A.0.60

B.0.828

C.2.712

D.6.004参考答案:A4.将函数的图象先向左平移,然后将所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为(

A.

B.

C.

D.参考答案:D略5.已知集合M={0,1,2,3},N={x|<2x<4},则集合M∩(CRN)等于()A.{0,1,2} B.{2,3} C. D.{0,1,2,3}参考答案:B6.将一个质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b,若已知出现了点数5,则使不等式a﹣b+3>0成立的事件发生的概率为()A. B. C. D.参考答案:B【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n=6+6=12,再利用列举法求出使不等式a﹣b+3>0成立的事件包含的基本事件的个数,由此能求出出现了点数5,则使不等式a﹣b+3>0成立的事件发生的概率.【解答】解:将一个质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b,已知出现了点数5,则基本事件总数n=6+6=12,使不等式a﹣b+3>0成立的事件包含的基本事件(a,b)有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(3,5),(4,5),(6,5),共有m=9个,∴出现了点数5,则使不等式a﹣b+3>0成立的事件发生的概率为p==.故选:B.【点评】本题考查概率、列举法等基础知识,考查数据处理能力、运算求解能力,考查数形结合思想、函数与方程思想,是基础题.7.如图所示的函数图象与x轴均有交点,其中不能用二分法求图中交点横坐标的是()A.①② B.①③ C.①④ D.③④参考答案:B【考点】二分法求方程的近似解.【分析】利用二分法求函数零点的条件是:函数在零点的左右两侧的函数值符号相反,即穿过x轴,分析选项可得答案.【解答】解:能用二分法求函数零点的函数,在零点的左右两侧的函数值符号相反,由图象可得,只有②④能满足此条件,①③不满足题意故选:B.8.函数f(x)=Msin(ωx+φ)(ω>0)在区间[a,b]上是增函数,且f(a)=﹣M,f(b)=M,则函数g(x)=Mcos(ωx+φ)在[a,b]上()A.是增函数 B.是减函数C.可以取得最大值M D.可以取得最小值﹣M参考答案:C【考点】HM:复合三角函数的单调性.【分析】由函数f(x)=Msin(ωx+φ)(ω>0)在区间[a,b]上是增函数,且f(a)=﹣M,f(b)=M,可利用赋值法进行求解即可【解答】解:∵函数f(x)在区间[a,b]上是增函数,且f(a)=﹣M,f(b)=M采用特殊值法:令ω=1,φ=0,则f(x)=Msinx,设区间为[﹣,].∵M>0,g(x)=Mcosx在[﹣,]上不具备单调性,但有最大值M,故选:C【点评】本题综合考查了正弦函数与余弦函数的图象及性质,利用整体思想进行求值,在解题时要熟练运用相关结论:y=Asin(wx+φ)为奇(偶)函数?φ=kπ(φ=kπ+)(k∈Z)9.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(加增的顺序为从塔顶到塔底).答案应为()A.6 B.5 C.4 D.3参考答案:D【考点】等比数列的前n项和.【分析】设此等比数列为{an},q=2,S7=381.利用等比数列的求和公式即可得出.【解答】解:设此等比数列为{an},q=2,S7=381.则=381,解得a1=3.故选:D.10.已知命题:,使;命题:,则下列判断正确的是(

)A.为真

B.为假

C.为真

D.为假参考答案:B考查命题的真假判断。由于三角函数的有界性,,所以假;对于,构造函数,求导得,又,所以,为单调递增函数,有恒成立,即,所以真。判断可知,B正确。二、填空题:本大题共7小题,每小题4分,共28分11.设,则______.参考答案:12.已知中,,则角等于________.参考答案:30°考点:正弦定理.13.三名学生两位老师站成一排,则老师站在一起的概率为

参考答案:【知识点】古典概型及其概率计算公式三名学生两位老师站成一排,有种方法,老师站在一起,共有种方法,∴老师站在一起的概率为.故答案为:.【思路点拨】求出三名学生两位老师站成一排,有种方法,老师站在一起的方法,即可求出概率.

14.动点在边长为1的正方体的对角线上从向移动,点作垂直于面的直线与正方体表面交于,,

则函数的解析式为

参考答案:15.已知向量,,若与垂直,则

参考答案:2略16.已知二次函数的值域为,则的最小值为

.参考答案:4略17.函数的定义域为

.参考答案:(0,1],解得定义域为。

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数.(1)求函数的最小值和最小正周期;ks5u(2)设△的内角的对边分别为且,,若,求的值。参考答案:(1),…………3分 则的最小值是, 最小正周期是;…………6分(2),则,…………7分,,所以,所以,,…………9分因为,所以由正弦定理得,……①…………10分由余弦定理得,即……②…………11分由①②解得:,.…………12分略19.设函数⑴若时,解不等式;⑵如果对于任意的,,求的取值范围。

参考答案:解:⑴因为函数,所以时不等式即,由绝对值的几何意义易知解为。⑵因为对任意的都有,即需对任意的都有也就是需要与之间距离,所以即可所以的取值范围是。

略20.如图,角的始边落在轴上,其始边、终边分别与单位圆交于点、(),△为等边三角形.(1)若点的坐标为,求的值;(2)设,求函数的解析式和值域.参考答案:解:(1)由题意,,因为点的坐标为,所以,,

…………3分所以.…………5分(2)解法一:在△中,由余弦定理,,

……6分所以.

…………8分因为,所以,

…………10分所以.因此函数的值域是。

…………12分解法二:由题意,,,……6分所以……8分因为,所以,

……………10分所以.即的值域是.

…………12分21.如图,在四棱锥P﹣ABCD的底面梯形ABCD中,AD∥BC,AB⊥BC,AB=1,AD=3,∠ADC=45°.又已知PA⊥平面ABCD,PA=1.求:(1)异面直线PD与AC所成角的大小.(结果用反三角函数值表示)(2)四棱锥P﹣ABCD的体积.参考答案:考点:用空间向量求直线间的夹角、距离;棱柱、棱锥、棱台的体积.专题:综合题.分析:(1)利用平移法作出异面直线所成的角,进而利用余弦定理可求线线角;(2)四棱锥的体积为×底面积×高,求出底面梯形的面积即可.解答: 解:(1)连接AC,过点C作CF∥AB交AD于点F,因为∠ADC=45°,所以FD=1,从而BC=AF=2,……延长BC至E,使得CE=AD=3,则AC∥DE,∴∠PDE(或其补角)是异面直线PD与AC所成角,且DE=AC=,AE=,PE=3,PD=.在△PDE中,cos∠PDE=﹣.…所以,异面直线PD与AC所成角的大小为arccos.…(2)∵BC=2,AD=3,AB=1,∴底面梯形面积为∵PA⊥平面ABCD,PA=1.∴四棱锥P﹣ABCD的体积为.…点评:本题考查线线角,考查棱锥的体积,解题的关键是正确作出线线角,属于中档题.22.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A;(3)求三棱锥C﹣BC1D的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】综合题;空间位置关系与距离.【分析】(1)连接B1C交BC1于点O,连接OD,则点O为B1C的中点.可得DO为△AB1C中位线,A1B∥OD,结合线面平行的判定定理,得A1B∥平面BC1D;(2)由AA1⊥底面ABC,得AA1⊥BD.正三角形ABC中,中线BD⊥AC,结合线面垂直的判定定理,得BD⊥平面ACC1A1,最后由面面垂直的判定定理,证出平面BC1D⊥平面ACC1A;(3)利用等体积转换,即可求三棱锥C﹣BC1D的体积.【解答】(1)证明:连接B1C交BC1于点O,连接OD,则点O为B1C的中点.∵D为AC中点,得DO为△AB1C中位线,∴A1B∥OD.∵OD?平面AB1C,A1B?平面BC1D,∴直线AB1∥平面BC1D;(2)证明:∵AA1⊥底面ABC,∴AA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论