河北省邢台市银桥中学高一数学文期末试题含解析_第1页
河北省邢台市银桥中学高一数学文期末试题含解析_第2页
河北省邢台市银桥中学高一数学文期末试题含解析_第3页
河北省邢台市银桥中学高一数学文期末试题含解析_第4页
河北省邢台市银桥中学高一数学文期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邢台市银桥中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知球夹在一个锐二面角之间,与两个半平面相切于点,若,球心到二面角的棱的距离为,则球的体积为A.B.C.D.参考答案:B略2.已知向量与的夹角为,,,若与的夹角为锐角,则实数λ的取值范围是()A. B.C. D.参考答案:D【考点】9R:平面向量数量积的运算.【分析】根据与的夹角为锐角,则()()>0,且排除同向的情况【解答】解:∵与的夹角为锐角,∴()()>0,即3λ+λ+(3+λ2)?>0,∵向量与的夹角为,,,∴3λ+2λ+(3+λ2)>0,即λ2+5λ+3>0,解得λ>或λ<当与的同向时,即λ2=3,即λ=时,不符合题意,综上所述实数λ的取值范围是(﹣∞,)∪(,)∪(,+∞),故选:D.3.(5分)某购物网站在2014年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数量最少,他最少需要下的订单张数为() A. 2 B. 3 C. 4 D. 5参考答案:B考点: 函数模型的选择与应用.专题: 应用题;函数的性质及应用.分析: 因是选择题,可进行分步计算,用42=9+11+11+11易得到.解答: ∵原价是:48×42=2016(元),2016×0.6=1209.6(元),∵每张订单金额(6折后)满300元时可减免100,∴若分成10,10,11,11,由于48×10=480,480×0.6=288,达不到满300元时可减免100,∴应分成9,11,11,11.∴只能减免3次,故选:B.点评: 本题是一道应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的解法.4.若集合A={0,1,2,3},B={1,2,4},则集合A∪B=

(

)A.{0,1,2,3,4}

B.{1,2,3,4}

C.{1,2}

D.{0}参考答案:A5.已知角为第二象限角,则(

)A.

B.

C.

D.参考答案:C略6.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为()A.10π B.11π C.12π D.13π参考答案:C【考点】由三视图求面积、体积.【分析】由题意可知,几何体是由一个球和一个圆柱组合而成的,分别求表面积即可.【解答】解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,球的半径为1,圆柱的高为3,底面半径为1.所以球的表面积为4π×12=4π.圆柱的侧面积为2π×3=6π,圆柱的两个底面积为2π×12=2π,所以该几何体的表面积为4π+2π+6π=12π.故选C.7.在△ABC中,a,b,c分别是内角A,B,C所对的边,若,则△ABC的形状为(

)A.等腰三角形 B.直角三角形C.钝角三角形 D.锐角三角形参考答案:B【分析】利用正弦定理和两角和的正弦化简可得,从而得到即.【详解】因为,所以,所以即,因为,故,故,所以,为直角三角形,故选B.【点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.8.已知等比数列{}中,各项都是正数,且,成等差数列,则(

)(A)

(B)

(C)

(D)1参考答案:C

略9.正方形ABCD的边长为2,点E、F分别在边AB、BC上,且AE=1,BF=,将此正方形沿DE、DF折起,使点A、C重合于点P,则三棱锥P-DEF的体积为()A.

B.C.

D.参考答案:B10.已知a,b∈R,且a>b,则下列不等式中成立的是()A. B.a2>b2 C.lg(a﹣b)>0 D.参考答案:D【考点】71:不等关系与不等式.【分析】此题要结合指数函数的图象,利用指数函数的单调性解决.【解答】解:由指数函数x图象与性质得,此指数函数在R是减函数,又a>b,∴故选D.二、填空题:本大题共7小题,每小题4分,共28分11.等差数列1,-3,-7,…的前10项和为_____.[参考答案:-17012.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x3),那么当x∈(-∞,0]时,f(x)=

.参考答案:13.已知函数,若,则

.参考答案:-1由条件知=,其中是奇函数,故,根据奇函数的性质得到,故-1.

14.在钝角中,,则最大边的取值范围是

.参考答案:略15.的最小正周期为,其中,则=

.参考答案:1016.△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件:(1)(a+b+c)(a+b﹣c)=3ab(2)sinA=2cosBsinC(3)b=acosC,c=acosB(4)2R(sin2A-sin2C)=(a-b)sinB有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题

.参考答案:(1)(2)→甲或(2)(4)→乙或(3)(4)→乙【分析】若(1)(2)→甲,由(1)利用平方差及完全平方公式变形得到关于a,b及c的关系式,利用余弦定理表示出cosC,把得到的关系式代入求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值求出C为60°,再利用诱导公式及两角和与差的正弦函数公式化简(2)中的等式,得到sin(B﹣C)=0,由B和C为三角形的内角,得到B﹣C的范围,利用特殊角的三角函数值得到B=C,从而得到三角形为等边三角形;若(2)(4)→乙,利用诱导公式及两角和与差的正弦函数公式化简(2)中的等式,得到sin(B﹣C)=0,由B和C为三角形的内角,得到B﹣C的范围,利用特殊角的三角函数值得到B=C,再利用正弦定理化简(4)中的等式,得到a=b,利用勾股定理的逆定理得到∠A为直角,从而得到三角形为等腰直角三角形;若(3)(4)→乙,利用正弦定理化简(4)中的等式,得到a=b,利用勾股定理的逆定理得到∠A为直角,再利用正弦定理化简(3)中的两等式,分别表示出sinA,两者相等再利用二倍角的正弦函数公式,得到sin2B=sin2C,由B和C都为三角形的内角,可得B=C,从而得到三角形为等腰直角三角形.三者选择一个即可.【解答】解:由(1)(2)为条件,甲为结论,得到的命题为真命题,理由如下:证明:由(a+b+c)(a+b﹣c)=3ab,变形得:a2+b2+2ab﹣c2=3ab,即a2+b2﹣c2=ab,则cosC==,又C为三角形的内角,∴C=60°,又sinA=sin(B+C)=sinBcosC+cosBsinC=2cosBsinC,即sinBcosC﹣cosBsinC=sin(B﹣C)=0,∵﹣π<B﹣C<π,∴B﹣C=0,即B=C,则A=B=C=60°,∴△ABC是等边三角形;以(2)(4)作为条件,乙为结论,得到的命题为真命题,理由为:证明:化简得:sinA=sin(B+C)=sinBcosC+cosBsinC=2cosBsinC,即sinBcosC﹣cosBsinC=sin(B﹣C)=0,∵﹣π<B﹣C<π,∴B﹣C=0,即B=C,∴b=c,由正弦定理===2R得:sinA=,sinB=,sinC=,代入得:2R?(﹣)=(a﹣b)?,整理得:a2﹣b2=ab﹣b2,即a2=ab,∴a=b,∴a2=2b2,又b2+c2=2b2,∴a2=b2+c2,∴∠A=90°,则三角形为等腰直角三角形;以(3)(4)作为条件,乙为结论,得到的命题为真命题,理由为:证明:由正弦定理===2R得:sinA=,sinB=,sinC=,代入得:2R?(﹣)=(a﹣b)?,整理得:a2﹣b2=ab﹣b2,即a2=ab,∴a=b,∴a2=2b2,又b2+c2=2b2,∴a2=b2+c2,∴∠A=90°,又b=acosC,c=acosB,根据正弦定理得:sinB=sinAcosC,sinC=sinAcosB,∴=,即sinBcosB=sinCcosC,∴sin2B=sin2C,又B和C都为三角形的内角,∴2B=2C,即B=C,则三角形为等腰直角三角形.故答案为:(1)(2)→甲或(2)(4)→乙或(3)(4)→乙【点评】此题考查了三角形形状的判断,涉及的知识有正弦、余弦定理,两角和与差的正弦函数公式,勾股定理,等边三角形的判定,等腰三角形的判定与性质,属于条件开放型题,是一类背景新、解题活、综合性强、无现成模式的题型.解答此类题需要运用观察、类比、猜测、归纳、推理等多种探索活动寻求解题策略.17.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为“格点”,如果函数的图像恰好通过个格点,则称函数为“阶格点函数”。下列函数中是“一阶格点函数”的有__________①;②;③;④⑤参考答案:②略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在中,点在边上,,.(1)求的值;(2)求线段的长.

参考答案:略19.(本小题满分12分)已知函数.(Ⅰ)化简函数的解析式,并求定义域;(Ⅱ)若,求的值.参考答案:由题意,,其定义域为.-------------8分(Ⅱ),,-------------10分.-------------12分20.已知函数,(1)判断函数的单调性并证明;(2)求函数的最大值和最小值.参考答案:(1)是增函数。

证明:设且

是增函数。(2)当x=3时,

当x=5时,

略21.(本小题满分12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。(1)摸出的3个球为白球的概率是多少?

(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?参考答案:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3。

从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个(1)

事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)=1/20=0.05(2)

事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=9/20=0.45事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次。则一天可赚,每月可赚1200元。22.已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.(1)求a的值;(2)解不等式log(x﹣1)>log(a﹣x);(3)求函数g(x)=|logax﹣1|的单调区间.参考答案:【考点】对数函数的图象与性质.【分析】(1)根据对数函数的性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论