上海市民办华光高级中学高三数学文摸底试卷含解析_第1页
上海市民办华光高级中学高三数学文摸底试卷含解析_第2页
上海市民办华光高级中学高三数学文摸底试卷含解析_第3页
上海市民办华光高级中学高三数学文摸底试卷含解析_第4页
上海市民办华光高级中学高三数学文摸底试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市民办华光高级中学高三数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某中学有学生3000人,其中高一、高三学生的人数是1200人、800人,为了解学生的视力情况,采用按年级分层抽样的方法,从该校学生中抽取一个480人的样本,则样本中高一、高二学生的人数共有(

)人。

A.288

B.300

C.320

D.352参考答案:D2.给出下列五个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容易为4的样本,已知7号,33号,46号同学在样本中,那么样本另一位同学的编号为23;②一组数据1、2、3、4、5的平均数、众数、中位数相同;③一组数据a、0、1、2、3,若该组数据的平均值为1,则样本标准差为2;④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=ax+b中,b=2,,则a=1;⑤如图是根据抽样检测后得出的产品样本净重(单位:克)数据绘制的频率分布直方图,已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克,并且小于104克的产品的个数是90。其中真命题为(A)①②④

(B)②④⑤

(C)②③④

(D)④③⑤参考答案:B3.双曲线C:=1(a>0,b>0)的一条渐近线与直线x﹣2y+1=0垂直,则双曲线C的离心率为() A. B. C. 2 D. 参考答案:略4.某几何体的三视图如图所示,图中小方格的长度为1,则该几何体的体积为(

)A.60

B.48

C.24

D.20参考答案:C5.在中,,,且,则(

)A.

B.

C.

D.参考答案:A6.如图,在矩形ABCD中,AB=4,BC=6,四边形AEFG为边长为2的正方形,现将矩形ABCD沿过点的动直线l翻折的点C在平面AEFG上的射影C1落在直线AB上,若点C在抓痕l上的射影为C2,则的最小值为()A.6﹣13 B.﹣2 C. D.参考答案:A【考点】点、线、面间的距离计算.【分析】由题意,以AB所在直线为x轴,AD所在直线为y轴,建立坐标系,表示出,利用基本不等式求最小值.【解答】解:由题意,以AB所在直线为x轴,AD所在直线为y轴,建立坐标系,则直线l的方程:y=kx﹣2k+2,CC2=.直线CC2的方程为y=﹣x++6,∴C1(4+6k,0),∴CC1=6,∴C1C2=CC2﹣CC1=6﹣.∴=﹣1.令|k﹣2|=t,∴k=t+2或2﹣t.①k=t+2,=3(t++4)﹣1≥6+11,t=时,取等号;②k=2﹣t,=3(t+﹣4)﹣1≥6﹣13,t=时,取等号;综上所述,的最小值为6﹣13,故选A.7.设全集U=R,集合A={x|1og2x≤2},B={x|(x﹣3)(x+1)≥0},则(?UB)∩A=() A.(﹣∞,﹣1] B.(﹣∞,﹣1]∪(0,3) C.[0,3) D.(0,3)参考答案:D【考点】交、并、补集的混合运算. 【分析】根据题意,先求出集合A,B,进而求出B的补集,进而根据交集的定义,可得答案. 【解答】解:∵集合A={x|1og2x≤2}=(0,4], B={x|(x﹣3)(x+1)≥0}=(﹣∞,﹣1]∪[3,+∞), ∴CUB=(﹣1,3), ∴(CUB)∩A=(0,3), 故选:D 【点评】本题考查集合混合运算,注意运算的顺序,其次要理解集合交、并、补的含义.8.已知数列是无穷等比数列,其前n项和是,若,,则的值为

)A.

B.

C.

D.

参考答案:D略9.若在直线上存在不同的三个点,使得关于实数的方程有解(点不在上),则此方程的解集为

A.

B.

C.

D.参考答案:A10.执行如图所示的程序框图,则输出的结果为(

)A.

B.

C.

D.参考答案:B详解:由程序框图知.故选B.

二、填空题:本大题共7小题,每小题4分,共28分11.复数在复平面上对应的点在第

象限.

参考答案:四略12.设{an}是公比为q的等比数列,Sn是它的前n项和,若{Sn}是等差数列,则q=

.参考答案:113.定义在R上的函数满足,且函数为奇函数.给出下列结论:①函数的最小正周期为2;②函数的图像关于(1,0)对称;③函数的图像关于对称;④函数的最大值为.其中正确命题的序号是(

)A.①②

B.②③

C.③④

D.①④参考答案:B略14.已知函数的值为

参考答案:015.三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P﹣ABC的外接球的表面积为.参考答案:12π【考点】球的体积和表面积.【专题】计算题;数形结合法;空间位置关系与距离;球.【分析】证明PA⊥PC,PB⊥PC,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P﹣ABC外接球的表面积.【解答】解:∵三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,∴△PAB≌△PAC≌△PBC.∵PA⊥PB,∴PA⊥PC,PB⊥PC.以PA、PB、PC为过同一顶点的三条棱,作长方体如图:则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为,∴球直径为2,半径R=,因此,三棱锥P﹣ABC外接球的表面积是4πR2=4π×=12π.故答案为:12π.【点评】本题考查了长方体对角线公式和球的表面积计算等知识,属于基础题.16.一个几何体的三视图如图所示,则这个几何体的体积等于

.参考答案:4【考点】由三视图求面积、体积.【分析】该几何体是四棱锥,底面是直角梯形,一条侧棱垂直底面,根据公式可求体积.【解答】解:由三视图复原几何体,如图,它的底面是直角梯形,一条侧棱垂直底面高为2,这个几何体的体积:故答案为4.17.函数f(x)=sin2x+的最大值是.参考答案:考点: 三角函数的最值;两角和与差的正弦函数.

专题: 三角函数的求值.分析: 利用两角和的余弦展开,令t=cosx﹣sinx换元,转化为二次函数求最值解答.解答: 解:f(x)=sin2x+=sin2x+=sin2x+=2sinxcosx+cosx﹣sinx.令t=cosx﹣sinx,则t∈[],∴t2=1﹣2sinxcosx,2sinxcosx=1﹣t2.原函数化为y=﹣t2+t+1,t∈[],对称轴方程为t=,∴当t=时函数有最大值为.故答案为:.点评: 本题考查了两角和与差的余弦函数,考查了利用换元法求三角函数的最值,考查了二次函数最值的求法,是中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.参考答案:(Ⅰ)详见解析(Ⅱ)生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元试题解析:(Ⅰ)解:由已知满足的数学关系式为,该二元一次不等式组所表示的区域为图1中的阴影部分.

19.(本小题满分10分)

设数列:1,-2,-2,3,3,3,-4,-4,-4,-4,…,即当时,.记对于,定义集合,,且.(1)求集合中元素的个数;(2)求集合中元素的个数.参考答案:20.设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.参考答案:解:(1)当时,由不等式得,因为在数轴上到点1和4的距离之和等于5的点为0和5,所以的解集为;(2)因为,所以若不等式对恒成立,则,解得.略21.某学校高二年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下表:每分钟跳绳个数[145,155)[155,165)[165,175)[175,185)[185,+∞)得分1617181920

年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数X近似服从正态分布,其中,为样本平均数的估计值(同一组中数据以这组数据所在区间中点值作代表).利用所得的正态分布模型,解决以下问题:(i)估计每分钟跳绳164个以上的人数(结果四舍五入到整数);(ii)若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为,求随机变量的分布列和数学期望与方差.附:若随机变量X服从正态分布,则,,.参考答案:(1);(2)(i)1683;(ii).【分析】(1)根据频率分布直方图得到16分,17分,18分的人数,再根据古典概率的计算公式求解。(2)根据离散型随机变量的分布列和数学期望与方差的公式进行求解。【详解】(1)设“两人得分之和小于35分”为事件,则事件包括以下四种情况:①两人得分均为16分;②两人中一人16分,一人17分;③两人中一人16分,一人18分;④两人均17分.由频率分布直方图可得,得16分的有6人,得17分的有12人,得18分的有18人,则由古典概型的概率计算公式可得.所以两人得分之和小于35的概率为.(2)由频率分布直方图可得样本数据的平均数的估计值为:(个).又由,得标准差,所以高二年级全体学生的跳绳个数近似服从正态分布.(i)因为,所以,故高二年级一分钟跳绳个数超过164个的人数估计为(人).(ii)由正态分布可得,全年级任取一人,其每分钟跳绳个数在179以上的概率为,所以,所有可能的取值为0,1,2,3.所以,,,,故的分布列为:0123

所以,.

22.设△ABC的内角A、B、C的对边长分别为a、b、c.设S为△ABC的面积,满足S=(a2+c2﹣b2).(Ⅰ)求B;(Ⅱ)若b=,求(﹣1)a+2c的最大值.参考答案:【考点】HT:三角形中的几何计算.【分析】(Ⅰ)利用三角形的面积公式表示出S,利用余弦定理表示出cosB,代入已知等式求出tanB的值,即可求出B,(Ⅱ)先求出A的范围,再根据正弦定理表示出a,c,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论