陕西省西安市东城第一中学2022-2023学年高二数学文测试题含解析_第1页
陕西省西安市东城第一中学2022-2023学年高二数学文测试题含解析_第2页
陕西省西安市东城第一中学2022-2023学年高二数学文测试题含解析_第3页
陕西省西安市东城第一中学2022-2023学年高二数学文测试题含解析_第4页
陕西省西安市东城第一中学2022-2023学年高二数学文测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市东城第一中学2022-2023学年高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;④“若x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④ B.①③ C.①② D.②④参考答案:A【考点】命题的真假判断与应用.【分析】结合四种命题的定义,及互为逆否的两个命题,真假性相同,分别判断各个结论的真假,可得答案.【解答】解:①“若a2<b2,则a<b”的否命题为“若a2≥b2,则a≥b”为假命题,故错误;②“全等三角形面积相等”的逆命题“面积相等的三角形全等”为假命题,故错误;③若a>1,则△=4a2﹣4a(a+3)=﹣12a<0,此时ax2﹣2ax+a+3>0恒成立,故“若a>1,则ax2﹣2ax+a+3>0的解集为R”为真命题,故其逆否命题为真命题,故正确;④“若x(x≠0)为有理数,则x为无理数”为真命题,故其的逆否命题,故正确.故选:A2.相关变量x,y的散点图如图所示,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程,相关系数为;方案二:剔除点(10,21),根据剩下数据得到线性回归直线方程:,相关系数为.则(

)A.B.C.D.参考答案:D【分析】根据相关系数的意义:其绝对值越接近1,说明两个变量越具有线性相关,以及负相关的意义作判断.【详解】由散点图得负相关,所以,因为剔除点(10,21)后,剩下点数据更具有线性相关性,更接近,所以.选D.【点睛】本题考查线性回归分析,重点考查散点图、相关系数,突显了数据分析、直观想象的考查.属基础题.3.命题“若,则”的逆否命题为(

)A.若≥1,则≥1或≤-1

B.若或,则C.若,则

D.若≥1或≤-1,则≥1参考答案:D4.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l∥α,m⊥α,则l⊥m B.若l⊥m,m∥α则l⊥αC.若l⊥m,m⊥α,则l∥α D.若l∥α,m∥α则l∥m参考答案:A【考点】LP:空间中直线与平面之间的位置关系.【分析】利用空间中线线、线面间的位置关系进行判断即可【解答】解:对于A,若l∥α,m⊥α,则l⊥m,故A正确;对于B,若l⊥m,m∥α则l⊥α或l∥α或l?α,故B错误;对于C,若l⊥m,m⊥α,则l∥α或l?α,故C错误;对于D,若l∥α,m∥α则l∥m或重合或异面;故D错误;故选A.5.若圆与双曲线的没有公共点,则半径的取值范围是()A.

B.

C.

D.参考答案:C若圆与双曲线的没有公共点,则半径小于双曲线上的点到圆心距离的最小值,设双曲线上任意点,圆心,,当时,的最小值为∴半径的取值范围是.故选:C

6.的值为(

)A.0

B.

C.2

D.4

参考答案:C略7.命题“若,则”的逆否命题是(

).A.若,则 B.若,则C.若,则 D.若,则参考答案:C命题若“”则“”的逆命题是“”则“”,所以“若,则”的逆否命题是:“若,则”,故选.8.双曲线的实轴长是(

)A

2

B

C

4

D

参考答案:C9.读如图21-3所示的程序框图,若输入p=5,q=6,则输出a,i的值分别为()图21-3A.a=5,i=1

B.a=5,i=2C.a=15,i=3

D.a=30,i=6参考答案:D10.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列命题正确的是(

)A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC参考答案:D【考点】平面与平面垂直的判定.【专题】证明题.【分析】由题意推出CD⊥AB,AD⊥AB,推出AB⊥平面ADC,可得平面ABC⊥平面ADC.【解答】解:∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°∴BD⊥CD又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD故CD⊥平面ABD,则CD⊥AB,又AD⊥AB故AB⊥平面ADC,所以平面ABC⊥平面ADC.故选D.【点评】本题考查平面与平面垂直的判定,考查逻辑思维能力,是中档题.二、填空题:本大题共7小题,每小题4分,共28分11.直线x+2y-3=0与直线ax+4y+b=0关于点A(1,0)对称,则a+b=________.参考答案:412.如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=.参考答案:a【考点】平面与平面平行的性质;棱柱的结构特征.【专题】计算题.【分析】由题设PQ在直角三角形PDQ中,故需要求出PD,QD的长度,用勾股定理在直角三角形PDQ中求PQ的长度.【解答】解:∵平面ABCD∥平面A1B1C1D1,MN?平面A1B1C1D1∴MN∥平面ABCD,又PQ=面PMN∩平面ABCD,∴MN∥PQ.∵M、N分别是A1B1、B1C1的中点∴MN∥A1C1∥AC,∴PQ∥AC,又AP=,ABCD﹣A1B1C1D1是棱长为a的正方体,∴CQ=,从而DP=DQ=,∴PQ===a.故答案为:a【点评】本题考查平面与平面平行的性质,是立体几何中面面平行的基本题型,本题要求灵活运用定理进行证明.13.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是.其中正确结论的序号是(写出所有正确结论的序号)参考答案:①③略14.双曲线的准线方程为

。参考答案:略15.经过点E(–,0)的直线l,交抛物线C:y2=2px(p>0)于A、B两点,l的倾斜角为α,则α的取值范围是

;F为抛物线的焦点,△ABF的面积为

(用p,α表示)。参考答案:(0,)∪(,π),16.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为.参考答案:6π【考点】旋转体(圆柱、圆锥、圆台).【专题】空间位置关系与距离.【分析】根据已知求出圆柱的母线长,代入圆柱表面积公式S=2πr(r+l)可得答案.【解答】解:∵圆柱的底面半径为1,母线长与底面的直径相等,故圆柱的母线l=2,故圆柱的表面积S=2πr(r+l)=6π,故答案为:6π【点评】本题考查的知识点是旋转体,圆柱的表面积,熟练掌握圆柱的表面积公式,是解答的关键.17.已知则方程的根的个数是_________.参考答案:5【分析】令,先求出的解为或,再分别考虑和的解,从而得到原方程解的个数.【详解】令,先考虑的解,它等价于或,解得或,再考虑,它等价于或,前者有1个解,后者有两个解;再考虑的解,它等价于或,前者无解,后者有两个不同的解且与的解不重复,综上原方程有5个不同的实数解.【点睛】求复合方程的解的个数问题,其实质就是方程组的解的个数问题,先利用导数或初等函数的性质等工具刻画的图像特征并考虑的解,再利用导数或初等函数的性质等工具刻画的图像特征并考虑的解情况,诸方程解的个数的总和即为原方程解的个数.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分16分)已知椭圆的左、右顶点分别A、B,椭圆过点(0,1)且离心率。(1)求椭圆的标准方程;(2)过椭圆上异于A,B两点的任意一点P作PH⊥轴,H为垂足,延长HP到点Q,且PQ=HP,过点B作直线轴,连结AQ并延长交直线于点M,N为MB的中点,试判断直线QN与以AB为直径的圆O的位置关系。参考答案:(1)因为椭圆经过点(0,1),所以,又椭圆的离心率得, 即,由得,所以, 故所求椭圆方程为。(6分) (2)设,则,设,∵HP=PQ,∴ 即,将代入得, 所以Q点在以O为圆心,2为半径的圆上,即Q点在以AB为直径的圆O上。 又A(-2,0),直线AQ的方程为,令,则, 又B(2,0),N为MB的中点,∴,, ∴ ,∴,∴直线QN与圆O相切。(16分)19.设函数.若函数在定义域上是单调递增函数,求的取值范围;参考答案:20.某电视台拟举行由选手报名参加的比赛类型的娱乐节目,选手进入正赛前需通过海选,参加海选的选手可以参加A、B、C三个测试项目,只需通过一项测试即可停止测试,通过海选.若通过海选的人数超过预定正赛参赛人数,则优先考虑参加海选测试次数少的选手进入正赛.当某选手三项测试均未通过,则被淘汰.现已知甲选手通过项目A、B、C测试的概率为分别为、、,且通过各次测试的事件相互独立. (Ⅰ)若甲选手先测试A项目,再测试B项目,后测试C项目,求他通过海选的概率;若改变测试顺序,对他通过海选的概率是否有影响?说明理由. (Ⅱ)若甲选手按某种顺序参加海选测试,第一项能通过的概率为p1,第二项能通过的概率为p2,第三项能通过的概率为p3,设他结束测试时已参加测试的次数记为ξ,求ξ的分布列和期望(用p1、p2、p3表示);并说明甲选手按怎样的测试顺序更有利于他进入正赛. 参考答案:【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列. 【专题】计算题;转化思想;综合法;概率与统计. 【分析】(Ⅰ)依题意,先求出甲选手不能通过海选的概率,从而得到甲选手能通过海选的概率,无论按什么顺序,其能通过海选的概率均为. (Ⅱ)依题意ξ的所有可能取值为1、2、3.分别求出相应的概率,由此能求出ξ的分布列和期望(用p1、p2、p3表示),并能求出甲选手按怎样的测试顺序更有利于他进入正赛. 【解答】解:(Ⅰ)依题意,甲选手不能通过海选的概率为(1﹣)(1﹣)(1﹣), 故甲选手能通过海选的概率为1﹣(1﹣)(1﹣)(1﹣)=.…..(3分) 若改变测试顺序对他通过海选的概率没有影响, 因为无论按什么顺序,其不能通过的概率均为(1﹣)(1﹣)(1﹣)=, 即无论按什么顺序,其能通过海选的概率均为.…..(5分) (Ⅱ)依题意ξ的所有可能取值为1、2、3. p(ξ=1)=p1, p(ξ=2)=(1﹣p1)p2, p(ξ=3)=(1﹣p1)(1﹣p2). 故ξ的分布列为: ξ123Pp1(1﹣p1)p2(1﹣p1)(1﹣p2)….(8分) Eξ=p1+2(1﹣p1)p2+3(1﹣p1)(1﹣p2)…(10分) 分别计算当甲选手按C→B→A,C→A→B,B→A→C,B→C→A,A→B→C,A→C→B, 得甲选手按C→B→A参加测试时,Eξ最小, ∵参加测试的次数少的选手优先进入正赛,故该选手选择将自己的优势项目放在前面, 即按C→B→A参加测试更有利于进入正赛.….(12分) 【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式的合理运用. 21.(本小题满分14分)设关于x的一元二次方程x2+2ax+b2=0,其中a,b是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.(1)若随机数a,b∈{1,2,3,4,5};(2)若a是从区间[0,5]中任取的一个数,b是从区间[0,4]中任取的一个数.参考答案:解:设事件A为“方程x2+2ax+b2=0有实根”,当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.…………2分(1)基本事件共有25个:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含15个基本事件,故事件A发生的概率为P(A)=

…………9分(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤5,0≤b≤4}.构成事件A的区域为{(a,b)|0≤a≤5,0≤b≤4,a≥b},概率为两者的面积之比,所以所求的概率为P(A)=

…………14分22.已知函数在与时都取得极值;(1)求的值及的极大值与极小值;(2)若方程有三个互异的实根,求的取值范围;(3)若对,不等式恒成立,求的取值范围。参考答案:解:(1)

由已知有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论