2024届山东省泰安市泰山区大津口中学九年级数学第一学期期末经典试题含解析_第1页
2024届山东省泰安市泰山区大津口中学九年级数学第一学期期末经典试题含解析_第2页
2024届山东省泰安市泰山区大津口中学九年级数学第一学期期末经典试题含解析_第3页
2024届山东省泰安市泰山区大津口中学九年级数学第一学期期末经典试题含解析_第4页
2024届山东省泰安市泰山区大津口中学九年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省泰安市泰山区大津口中学九年级数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,若,则的长是()A. B. C. D.2.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()

A.30 B.27 C.14 D.323.一元二次方程x2+x+1=0的根的情况是().A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.以上说法都不对4.下列事件中,是必然事件的是()A.某射击运动员射击一次,命中靶心B.抛一枚硬币,一定正面朝上C.打开电视机,它正在播放新闻联播D.三角形的内角和等于180°5.用配方法解方程时,应将其变形为()A. B. C. D.6.一元二次方程的一根是1,则的值是()A.3 B.-3 C.2 D.-27.如果,那么的值等于()A. B. C. D.8.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m9.下列命题为假命题的是()A.直角都相等 B.对顶角相等C.同位角相等 D.同角的余角相等10.若一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是().A. B. C. D.11.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4.2,则DF的长是()A. B.6 C.6.3 D.10.512.下列事件中,是必然事件的是()A.明天一定有雾霾B.国家队射击运动员射击一次,成绩为10环C.13个人中至少有两个人生肖相同D.购买一张彩票,中奖二、填空题(每题4分,共24分)13.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为__________.14.如图在Rt△OAB中∠AOB=20°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=____.15.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为_____.16.如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB=54°,则∠CBF=____°.17.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.18.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上的一个动点,则PF+PE的最小值为______________三、解答题(共78分)19.(8分)如图,在中,∠A=90°,AB=12cm,AC=6cm,点P沿AB边从点A开始向点B以每秒2cm的速度移动,点Q沿CA边从点C开始向点A以每秒1cm的速度移动,P、Q同时出发,用t表示移动的时间.(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?20.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.21.(8分)已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).22.(10分)如图1,已知平行四边形,是的角平分线,交于点.(1)求证:.(2)如图2所示,点是平行四边形的边所在直线上一点,若,且,,求的面积.23.(10分)如图,一次函数的图象与反比例函数的图象相交于点,两点,与,轴分别交于,两点.(1)求一次函数的表达式;(2)求的面积.24.(10分)已知二次函数的图像与轴交于点,与轴的一个交点坐标是.(1)求二次函数的解析式;(2)当为何值时,.25.(12分)在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.(1)证明:ΔABE≌ΔCAD.(2)若CE=CP,求证∠CPD=∠PBD.(3)在(2)的条件下,证明:点D是BC的黄金分割点.26.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△C;平移△ABC,若A的对应点的坐标为(0,-4),画出平移后对应的△;(2)若将△C绕某一点旋转可以得到△,请直接写出旋转中心的坐标;(3)在轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据平行线分线段成比例定理,先算出,可得,根据DE的长即可求得BC的长.【题目详解】解:∵,∴,∵,∴,∵,∴.【题目点拨】本题考查了平行线分线段成比例定理,由题意求得是解题的关键.2、A【解题分析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【题目点拨】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.3、C【分析】先计算出根的判别式的值,根据的值就可以判断根的情况.【题目详解】=b2-4ac=1-4×1×1=-3∵-3<0∴原方程没有实数根故选:C.【题目点拨】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.4、D【分析】根据必然事件、不可能事件、随机事件的概念解答即可.【题目详解】A.某射击运动员射击一次,命中靶心,是随机事件,故此选项错误;B.抛一枚硬币,一定正面朝上,是随机事件,故此选项错误;C.打开电视机,它正在播放新闻联播,是随机事件,故此选项错误;D.三角形的内角和等于180°,是必然事件.故选:D.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、D【分析】二次项系数为1时,配一次项系数一半的平方即可.【题目详解】故选:D【题目点拨】本题考查的是解一元二次方程的配方法,配方法要先把二次项系数化为1,再配一次项系数一半的平方是关键.6、A【解题分析】将代入方程,求出的值.【题目详解】将代入方程得解得故答案为:A.【题目点拨】本题考查了求一元二次方程系数的问题,掌握代入求值法求解的值是解题的关键.7、D【分析】依据,即可得到a=b,进而得出的值.【题目详解】∵,∴3a﹣3b=5b,∴3a=8b,即a=b,∴==.故选D.【题目点拨】本题考查了比例的性质,解决问题的关键是运用内项之积等于外项之积.8、A【解题分析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.【题目详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故选A.【题目点拨】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.9、C【解题分析】根据直角、对顶角的概念、同位角的定义、余角的概念判断.【题目详解】解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、C【分析】根据相似图形对应边成比例列出关系式即可求解.【题目详解】如图,矩形ABCD对折后所得矩形与原矩形相似,则矩形ABCD∽矩形BFEA,设矩形的长边长是a,短边长是b,则AB=CD=EF=b,AD=BC=a,BF=AE=,根据相似多边形对应边成比例得:,即∴∴故选C.【题目点拨】本题考查相似多边形的性质,根据相似多边形对应边成比例建立方程是关键.11、D【分析】根据平行线分线段成比例定理得出,再把已知条件代入求解即可.【题目详解】解:∵l1∥l2∥l3,,DE=4.2,∴,即,解得:EF=6.3,∴DF=DE+EF=10.1.故选:D.【题目点拨】本题考查平行线分线段成比例定理.熟练掌握平行线分线段成比例定理是解题关键.12、C【分析】必然事件是一定发生的事情,据此判断即可.【题目详解】A.明天有雾霾是随机事件,不符合题意;B.国家队射击运动员射击一次,成绩为10环是随机事件,不符合题意;C.总共12个生肖,13个人中至少有两个人生肖相同是必然事件,符合题意;D.购买一张彩票,中奖是随机事件,不符合题意;故选:C.【题目点拨】本题考查了必然事件与随机事件,必然事件是一定发生的的时间,随机事件是可能发生,也可能不发生的事件,熟记概念是解题的关键.二、填空题(每题4分,共24分)13、2【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【题目详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【题目点拨】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用.14、80°.【分析】由将△OAB绕点O逆时针旋转100°得到△OA1B1,可求得∠A1OA的度数,继而求得答案.【题目详解】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°,∵∠AOB=20°,∴∠A1OB=∠A1OA﹣∠AOB=80°.故答案为:80°.【题目点拨】此题考查了旋转的性质.注意找到旋转角是解此题的关键.15、(4,6)或(4,0)【解题分析】试题分析:由AB∥y轴和点A的坐标可得点B的横坐标与点A的横坐标相同,根据AB的距离可得点B的纵坐标可能的情况试题解析:∵A(4,3),AB∥y轴,∴点B的横坐标为4,∵AB=3,∴点B的纵坐标为3+3=6或3-3=0,∴B点的坐标为(4,0)或(4,6).考点:点的坐标.16、46°【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【题目详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠DCB=80°∴∠BDC=180°-∠DBC-∠DCB=46°∴∠BOC=2∠BDC=92°又∵OB=OC∴∠OBC=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【题目点拨】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.17、(1)、小于;(2)、6;(3)、9、4【解题分析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用18、【题目详解】试题分析:∵正方形ABCD是轴对称图形,AC是一条对称轴∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长∵AB=4,AF=2,∴AG=AF=2∴EG=考点:轴对称图形三、解答题(共78分)19、(1);(2)或.【分析】(1)利用距离=速度×时间可用含t的式子表示AP、CQ、QA的长,根据QA=AP列方程求出t值即可;(2)分△QAP∽△BAC和△QAP∽△CAB两种情况,根据相似三角形的性质列方程分别求出t的值即可.【题目详解】(1)∵点P的速度是每秒2cm,点Q的速度是每秒1cm,∴,,,∵时,为等腰直角三角形,∴,解得:,∴当时,为等腰直角三角形.(2)根据题意,可分为两种情况,①如图,当∽时,,∴,解得:,②当∽,,∴,解得:,综上所述:当或时,以点Q、A、P为顶点的三角形与相似.【题目点拨】本题考查了等腰直角三角形腰长相等的性质,考查了相似三角形对应边比值相等的性质,正确列出关于t的方程式是解题的关键.20、(1);(2)x>1;(3)P(﹣,0)或(,0)【解题分析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.21、(1)证明见解析;(2)2.【解题分析】试题分析:(1)找出a,b及c,表示出根的判别式,变形后得到其值大于1,即可得证.(2)把x=1代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.试题解析:(1)∵关于x的一元二次方程x2-(2m+1)x+m(m+1)=1.∴△=(2m+1)2-4m(m+1)=1>1,∴方程总有两个不相等的实数根;(2)∵x=1是此方程的一个根,∴把x=1代入方程中得到m(m+1)=1,∴m=1或m=-1,∵(2m-1)2+(3+m)(3-m)+7m-2=4m2-4m+1+9-m2+7m-2=3m2+3m+2,把m=1代入3m2+3m+2得:3m2+3m+2=2;把m=-1代入3m2+3m+2得:3m2+3m+2=3×1-3+2=2.考点:1.根的判别式;2.一元二次方程的解.22、(1)证明见解析;(2)【分析】(1)根据角平分线的定义结合两直线平行,内错角相等可得,然后利用等角对等边证明即可;(2)先证得为等腰三角形,设,,利用三角形内角和定理以及平行线性质定理证得,再利用同底等高的两个三角形面积相等即可求得答案.【题目详解】(1)平分,,又四边形是平行四边形,,,,;(2),,,为等腰三角形,设,,,,又,,,,即为直角三角形,四边形是平行四边形,,∴.【题目点拨】本题考查了平行四边形的性质,角平分线的定义,三角形内角和定理,等角对等边的性质,同底等高的两个三角形面积相等,证得为直角三角形是正确解答(2)的关键.23、(1);(2)8【分析】(1)根据题意先把,代入确定A点和B点坐标,然后利用待定系数法求一次函数解析式即可;(2)根据题意分别求出C、D点的坐标,进而根据面积公式进行运算可得结论.【题目详解】解:(1)把,代入得,把和代入得,所以一次函数表达式为.(2)在中含得,令得,,,.【题目点拨】本题考查反比例函数与一次函数的交点问题,注意掌握求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解以及掌握待定系数法求函数解析式.24、(1)y=(x-1)2-9;(2)-2<x<4【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得a,k的值,从而得到抛物线的解析式;

(2)根据对称性求出抛物线与x轴的另一个交点B的坐标,最后依据y<1可求得x的取值范围.【题目详解】解:(1)∵y=a(x-1)2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论