2024届吉林省长春市德惠三中学数学九上期末质量跟踪监视模拟试题含解析_第1页
2024届吉林省长春市德惠三中学数学九上期末质量跟踪监视模拟试题含解析_第2页
2024届吉林省长春市德惠三中学数学九上期末质量跟踪监视模拟试题含解析_第3页
2024届吉林省长春市德惠三中学数学九上期末质量跟踪监视模拟试题含解析_第4页
2024届吉林省长春市德惠三中学数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长春市德惠三中学数学九上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则扇形BOC的面积为()A. B. C.π D.2.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.3.已知二次函数y=,设自变量的值分别为x1,x2,x3,且-3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y14.下列所给的事件中,是必然事件的是()A.一个标准大气压下,水加热到时会沸腾B.买一注福利彩票会中奖C.连续4次投掷质地均匀的硬币,4次均硬币正面朝上D.2020年的春节小长假辛集将下雪5.若关于的一元二次方程有实数根,则取值范围是()A. B. C. D.6.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20° B.25° C.40° D.50°7.如图①,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为().A.3 B.4 C.5 D.68.已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个.A.1 B.2 C.3 D.49.下列事件中,是必然事件的是()A.经过有交通信号灯的路口,遇到红灯 B.明天太阳从西方升起C.三角形内角和是 D.购买一张彩票,中奖10.在一个不透明的袋子里装有6个颜色不同的球(除颜色不同外,质地、大小均相同),其中个球为红球,个球为白球,若从该袋子里任意摸出1个球,则摸出的球是白球的概率为()A. B. C. D.11.如图,从点看一山坡上的电线杆,观测点的仰角是45°,向前走到达点,测得顶端点和杆底端点的仰角分别是60°和30°,则该电线杆的高度()A. B. C. D.12.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,,,△A2B2B3是全等的等边三角形,点B,B1,B2,B3在同一条直线上,连接A2B交AB1于点P,交A1B1于点Q,则PB1∶QB1的值为___.14.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为____________.15.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.16.抛物线的对称轴为__________.17.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为,那么该矩形的面积为___.18.一元二次方程x2﹣5x=0的两根为_________.三、解答题(共78分)19.(8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?20.(8分)校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是多少米?21.(8分)在平面直角坐标系中,二次函数y=ax2+2nx+c的图象过坐标原点.(1)若a=-1.①当函数自变量的取值范围是-1≤x≤2,且n≥2时,该函数的最大值是8,求n的值;②当函数自变量的取值范围是时,设函数图象在变化过程中最高点的纵坐标为m,求m与n的函数关系式,并写出n的取值范围;(2)若二次函数的图象还过点A(-2,0),横、纵坐标都是整数的点叫做整点.已知点,二次函数图象与直线AB围城的区域(不含边界)为T,若区域T内恰有两个整点,直接写出a的取值范围.22.(10分)平面直角坐标系中有两点、,我们定义、两点间的“值”直角距离为,且满足,其中.小静和佳佳在解决问题:(求点与点的“1值”直角距离)时,采用了两种不同的方法:(方法一):;(方法二):如图1,过点作轴于点,过点作直线与轴交于点,则请你参照以上两种方法,解决下列问题:(1)已知点,点,则、两点间的“2值”直角距离.(2)函数的图像如图2所示,点为其图像上一动点,满足两点间的“值”直角距离,且符合条件的点有且仅有一个,求出符合条件的“值”和点坐标.(3)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走,因此,两地之间修建垂直和平行的街道常常转化为两点间的“值”直角距离,地位于地的正东方向上,地在点东北方向上且相距,以为圆心修建了一个半径为的圆形湿地公园,现在要在公园和地之间修建观光步道.步道只能东西或者南北走向,并且东西方向每千米成本是20万元,南北方向每千米的成本是10万元,问:修建这一规光步道至少要多少万元?23.(10分)有一枚均匀的正四面体,四个面上分别标有数字1,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值.(1)用树状图或列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率.24.(10分)如图,矩形中,为原点,点在轴上,点在轴上,点的坐标为(4,3),抛物线与轴交于点,与直线交于点,与轴交于两点.(1)求抛物线的表达式;(2)点从点出发,在线段上以每秒1个单位长度的速度向点运动,与此同时,点从点出发,在线段上以每秒个单位长度的速度向点运动,当其中一点到达终点时,另一点也停止运动.连接,设运动时间为(秒).①当为何值时,得面积最小?②是否存在某一时刻,使为直角三角形?若存在,直接写出的值;若不存在,请说明理由.25.(12分)总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利y1元,乙店每件衬衫降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值.(2)求y2关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?26.小明家所在居民楼的对面有一座大厦AB,高为74米,为测量居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.(1)求∠ACB的度数;(2)求小明家所在居民楼与大厦之间的距离.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)

参考答案一、选择题(每题4分,共48分)1、B【解题分析】连接AC,由垂径定理的CE=DE,根据线段垂直平分线的性质得到AC=AD,由等腰三角形的性质得到∠CAB=∠DAB=30°,由圆周角定理得到∠COB=60°,根据扇形面积的计算公式即可得到结论.【题目详解】连接AC,∵CD为⊙O的弦,AB是⊙O的直径,∴CE=DE,∵AB⊥CD,∴AC=AD,∴∠CAB=∠DAB=30°,∴∠COB=60°,∴扇形BOC的面积=,故选B.【题目点拨】本题考查的是扇形的面积的计算,圆周角定理,垂径定理,等腰三角形的性质,熟练掌握圆周角定理是解答此题的关键.2、D【解题分析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.3、A【分析】对于开口向下的二次函数,在对称轴的右侧为减函数.【题目详解】解:∵二次函数y=∴对称轴是x=−,函数开口向下,

而对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小,

∵-1<x1<x2<x1,

∴y1,y2,y1的大小关系是y1>y2>y1.

故选:A.考点:二次函数的性质4、A【分析】直接利用时间发生的可能性判定即可.【题目详解】解:A、一个标准大气压下,水加热到100℃时会沸腾,是必然事件;B买一注福利彩票会中奖,是随机事件;C、连续4次投掷质地均匀的硬币,4次均硬币正面朝上,是随机事件;D,2020年的春节小长假辛集将下雪,是随机事件.故答案为A.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念,掌握三类事件的定义以及区别与联系是解答本题的关键.5、D【分析】根据△=b2-4ac≥0,一元二次方程有实数根,列出不等式,求解即可.【题目详解】解:∵关于x的一元二次方程有实数根,

解得:.

故选:D.【题目点拨】本题考查一元二次方程根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.6、B【解题分析】连接OA,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【题目详解】连接OA,如图:∵PA是⊙O的切线,切点为A,∴OA⊥AP,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=∠AOB=25°,故选B.【题目点拨】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.7、B【分析】当点在上运动时,面积逐渐增大,当点到达点时,结合图象可得面积最大为1,得到与的积为12;当点在上运动时,面积逐渐减小,当点到达点时,面积为0,此时结合图象可知点运动路径长为7,得到与的和为7,构造关于的一元二方程可求解.【题目详解】解:当点在上运动时,面积逐渐增大,当点到达点时,面积最大为1.∴,即.当点在上运动时,面积逐渐减小,当点到达点时,面积为0,此时结合图象可知点运动路径长为7,∴.则,代入,得,解得或1,因为,即,所以.故选B.【题目点拨】本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.8、C【分析】根据△ABC的面积可将高求出,即⊙O上的点到AB的距离为高长的点都符合题意.【题目详解】过圆心向弦AB作垂线,再连接半径.设△ABE的高为h,由可求.由圆的对称性可知,有两个点符合要求;又弦心距=.∵3+2=5,故将弦心距AB延长与⊙O相交,交点也符合要求,故符合要求的点有3个.故选C.考点:(1)垂径定理;(2)勾股定理.9、C【分析】必然事件就是一定发生的事件,依据定义即可判断【题目详解】解:A.经过有交通信号灯的路口,遇到红灯是随机事件;B.明天太阳从西方升起是不可能事件;C.任意画一个三角形,其内角和是是必然事件;D.购买一张彩票,中奖是随机事件;故选:【题目点拨】本题考查的是必然事件,必然事件是一定发生的事件.10、D【分析】让白球的个数除以球的总个数即为所求的概率.【题目详解】解:因为一共有6个球,白球有4个,

所以从布袋里任意摸出1个球,摸到白球的概率为:.

故选:D.【题目点拨】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.11、A【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【题目详解】解:延长PQ交直线AB于点E,设PE=x.

在直角△APE中,∠PAE=45°,

则AE=PE=x;

∵∠PBE=60°

∴∠BPE=30°

在直角△BPE中,,∵AB=AE-BE=6,则解得:∴在直角△BEQ中,故选:A【题目点拨】本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.12、A【题目详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.二、填空题(每题4分,共24分)13、【分析】根据题意说明PB1∥A2B3,A1B1∥A2B2,从而说明△BB1P∽△BA2B3,△BB1Q∽△BB2A2,再得到PB1和A2B3的关系以及QB1和A2B2的关系,根据A2B3=A2B2,得到PB1和QB1的比值.【题目详解】解:∵△ABB1,△A1B1B2,△A2B2B3是全等的等边三角形,∴∠BB1P=∠B3,∠A1B1B2=∠A2B2B3,∴PB1∥A2B3,A1B1∥A2B2,∴△BB1P∽△BA2B3,△BB1Q∽△BB2A2,∴,,∴,,∵,∴PB1∶QB1=A2B3∶A2B2=2:3.故答案为:.【题目点拨】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键.14、【分析】利用概率公式直接写出答案即可.【题目详解】∵共“微信”、“支付宝”、“银行卡”三种支付方式,∴选择“微信”支付方式的概率为,故答案为:.【题目点拨】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、【解题分析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是.故答案为:.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、【分析】根据抛物线的解析式利用二次函数的性质,即可找出抛物线的对称轴,此题得解.【题目详解】解:∵抛物线的解析式为,

∴抛物线的对称轴为直线x=故答案为:.【题目点拨】本题考查二次函数的性质,解题的关键是明确抛物线的对称轴是直线x=.17、240【分析】由矩形的性质和三角函数求出AB,由勾股定理求出AD,即可得出矩形的面积.【题目详解】解:如图所示:∵四边形ABCD是矩形,∴∠BAD=90°,AC=BD=26,∵,∴,∴,∴该矩形的面积为:;故答案为:240.【题目点拨】本题考查了矩形的性质、勾股定理、三角函数;熟练掌握矩形的性质,由勾股定理求出AB和AD是解决问题的关键.18、0或5【解题分析】分析:本题考查的是一元二次方程的解法——因式分解法.解析:故答案为0或5.三、解答题(共78分)19、(1)(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解题分析】试题分析:(1)设y=kx+b,再由题目已知条件不难得出解析式;(2)设利润为W,将W用含x的式子表示出来,W为关于x的二次函数,要求最值,将解析式化为顶点式即可求出.试题解析:解:(1)设y=kx+b,根据题意得:,解得:k=-1,b=8,所以,y与x的函数关系式为y=-x+8;(2)设利润为W,则W=(x-4)(-x+8)=-(x-6)2+4,因为a=-1<0,所以当x=6时,W最大为4万元.当销售价格定为6元时,才能使每月的利润最大,每月的最大利润是4万元.点睛:要求最值,一般讲二次函数解析式写成顶点式.20、2m【题目详解】解:设道路的宽为xm,(32-x)(20-x)=540,整理,得x2-52x+100=0,∴(x-50)(x-2)=0,∴x1=2,x2=50(不合题意,舍去),小道的宽应是2m.故答案为2.【题目点拨】此题应熟记长方形的面积公式,另外求出4块试验田平移为一个长方形的长和宽是解决本题的关键.21、(1)①n=1;②(2)【分析】(1)①根据已知条件可确定抛物线图象的基本特征,从而列出关于的方程,即可得解;②根据二次函数图象的性质分三种情况进行分类讨论,从而得到与的分段函数关系;(2)由得正负进行分类讨论,结合已知条件求得的取值范围.【题目详解】解:(1)∵抛物线过坐标原点∴c=0,a=-1∴y=-x2+2nx∴抛物线的对称轴为直线x=n,且n≥2,抛物线开口向下∴当-1≤x≤2时,y随x的增大而增大∴当x=2时,函数的最大值为8∴-4+4n=8∴n=1.②若则∴抛物线开口向下,在对称轴右侧,随的增大而减小∴当时,函数值最大,;若则∴此时,抛物线的顶点为最高点∴;若则∴抛物线开口向下,在对称轴左侧,随的增大而增大∴当时,函数值最大,∴综上所述:(2)结论:或证明:∵过∴∴①∵若,直线的解析式为,抛物线的对称轴为直线∴顶点为,对称轴与直线交点坐标为∴两个整点为,∵不含边界∴∴②∵若,区域内已经确定有两个整点,∴在第三项象限和第一象限的区域内都要确保没有整点∴∴∵当时,直线上的点的纵坐标为,抛物线上的点的纵坐标为∴∴∴故答案为:(1)①;②(2)或【题目点拨】本题属于二次函数的综合创新题目,熟练掌握二次函数的性质是解题的关键,注意分类讨论思想方法的应用.22、(1)10(2),(3)【分析】(1)根据直角距离的公式,直接代入求解即可;(2)设点C的坐标为,代入直角距离公式可得根据根的判别式求出k的值,即可求出点C的坐标;(3)如图,⊙C与线段AC交于点D,过点D作与AB交于点E,先证明△ADE是等腰直角三角形,从而得出,再根据直角距离的定义,即可求出出最低的成本.【题目详解】(1)∵,点,点∴;(2)设点C的坐标为∵∴∵∴∴∵符合条件的点有且仅有一个,且∴解得∴解得∴故,;(3)如图,⊙C与线段AC交于点D,过点D作与AB交于点E由题意得∴∵∴△ADE是等腰直角三角形∴∵步道只能东西或者南北走向,并且东西方向每千米成本是20万元,南北方向每千米的成本是10万元∴步道的最短距离为A和D的直角距离,即最低总成本(万元)故修建这一规光步道至少要万元.【题目点拨】本题考查了直角距离的问题,掌握直角距离的定义以及公式、根的判别式、解一元二次方程的方法是解题的关键.23、(1)答案见解析;(2),【解题分析】试题分析:列举出符合题意的各种情况的个数,再根据概率公式解答即可.解:(1)画树状图,(2)由图可知,所有可能出现的结果有12种,其中S=0的有2种,S<2的有5种,∴P(S=0)=,P(S<2)=.24、(1);(2)①;②【分析】(1)根据点B的坐标可得出点A,C的坐标,代入抛物线解析式即可求出b,c的值,求得抛物线的解析式;(2)①过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,推出△QFA∽△CBA,△CGP∽△CBA,用含t的式子表示OF,PG,将三角形的面积用含t的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【题目详解】解:(1)由题意知:A(0,3),C(4,0),∵抛物线经过A、B两点,∴,解得,,∴抛物线的表达式为:.(2)①∵四边形ABCD是矩形,∴∠B=90O,∴AC2=AB2+BC2=5;由,可得,∴D(2,3).过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,∵∠FAQ=∠BAC,∠QFA=∠CBA,∴△QFA∽△CBA.∴,∴.同理:△CGP∽△CBA,∴∴,∴,当时,△DPQ的面积最小.最小值为.②由图像可知点D的坐标为(2,3),AC=5,直线AC的解析式为:.三角形直角的位置不确定,需分情况讨论:当时,根据勾股定理可得出:,整理,解方程即可得解;当时,可知点G运动到点B的位置,点P运动到C的位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论