2024届湖北省鄂州市区九年级数学第一学期期末学业质量监测试题含解析_第1页
2024届湖北省鄂州市区九年级数学第一学期期末学业质量监测试题含解析_第2页
2024届湖北省鄂州市区九年级数学第一学期期末学业质量监测试题含解析_第3页
2024届湖北省鄂州市区九年级数学第一学期期末学业质量监测试题含解析_第4页
2024届湖北省鄂州市区九年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省鄂州市区九年级数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,A为反比例函数y=的图象上一点,AB垂直x轴于B,若S△AOB=2,则k的值为()A.4 B.2 C.﹣2 D.12.如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤123.抛物线的顶点坐标为()A. B. C. D.4.关于的方程有实数根,则满足()A. B.且 C.且 D.5.如图,已知正方形ABCD的边长为2,点E、F分别为AB、BC边的中点,连接AF、DE相交于点M,则∠CDM等于A. B. C. D.6.二次函数,当时,则()A. B. C. D.7.如图,AB为圆O直径,C、D是圆上两点,ADC=110°,则OCB度()A.40 B.50 C.60 D.708.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为1.其中,正确结论的个数为()A.1个 B.2个 C.1个 D.4个9.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()A.y=﹣x2+6x(3<x<6) B.y=﹣x2+12x(0<x<12)C.y=﹣x2+12x(6<x<12) D.y=﹣x2+6x(0<x<6)10.如图,正六边形内接于圆,圆半径为2,则六边形的边心距的长为()A.2 B. C.4 D.11.如图,若二次函数的图象的对称轴为,与x轴的一个交点为,则:①二次函数的最大值为;②;③当时,y随x的增大而增大;④当时,,其中正确命题的个数是()A.1 B.2 C.3 D.412.如图,在中,,,,则A. B. C. D.二、填空题(每题4分,共24分)13.计算:sin30°=_____.14.如图是抛物线图象的一部分,抛物线的顶点坐标为,与轴的一个交点为,点和点均在直线上.①;②;③抛物线与轴的另一个交点时;④方程有两个不相等的实数根;⑤;⑥不等式的解集为.上述六个结论中,其中正确的结论是_____________.(填写序号即可)15.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=_____度.16.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是________.17.如图,已知点A,C在反比例函数的图象上,点B,D在反比例函的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a−b的值是_______.18.甲、乙两人在米短跑训练中,某次的平均成绩相等,甲的方差是,乙的方差是,这次短跑训练成绩较稳定的是___(填“甲”或“乙”)三、解答题(共78分)19.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?20.(8分)某企业生产并销售某种产品,整理出该商品在第()天的售价与函数关系如图所示,已知该商品的进价为每件30元,第天的销售量为件.(1)试求出售价与之间的函数关系是;(2)请求出该商品在销售过程中的最大利润;(3)在该商品销售过程中,试求出利润不低于3600元的的取值范围.21.(8分)如图,一块直角三角板的直角顶点放在正方形的边上,并且使一条直角边经过点.另一条直角边与交于点.求证:.22.(10分)在一个不透明的口袋中装有3张相同的纸牌,它们分别标有数字3,﹣1,2,随机摸出一张纸牌不放回,记录其标有的数字为x,再随机摸取一张纸牌,记录其标有的数字为y,这样就确定点P的一个坐标为(x,y)(1)用列表或画树状图的方法写出点P的所有可能坐标;(2)写出点P落在双曲线上的概率.23.(10分)如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.24.(10分)如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有颜色的概率.25.(12分)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润为10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属于第几档次产品?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?26.如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.

参考答案一、选择题(每题4分,共48分)1、A【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【题目详解】由于点A是反比例函数图象上一点,则S△AOB=|k|=2;

又由于函数图象位于一、三象限,则k=4.

故选A.【题目点拨】本题考查反比例函数系数k的几何意义,解题的关键是掌握反比例函数系数k的几何意义.2、D【解题分析】首先证明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解决问题.【题目详解】翻折后的抛物线的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,∵设x1,x2,x3均为正数,∴点P1(x1,y1),P2(x2,y2)在第四象限,根据对称性可知:x1+x2=8,∵2≤x3≤4,∴10≤x1+x2+x3≤12,即10≤t≤12,故选D.【题目点拨】本题考查二次函数与x轴的交点,二次函数的性质,抛物线的旋转等知识,熟练掌握和灵活应用二次函数的相关性质以及旋转的性质是解题的关键.3、D【解题分析】根据抛物线顶点式的性质进行求解即可得答案.【题目详解】∵解析式为∴顶点为故答案为:D.【题目点拨】本题考查了已知二次函数顶点式求顶点坐标,注意点坐标符号有正负.4、A【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【题目详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.5、A【分析】根据正方形的特点可知∠CDM=∠DEA,利用勾股定理求出DE,根据余弦的定义即可求解.【题目详解】∵CD∥AB,∴∠CDM=∠DEA,∵E是AB中点,∴AE=AB=1∴DE=∴∠CDM=∠DEA==故选A.【题目点拨】此题主要考查余弦的求解,解题的关键是熟知余弦的定义.6、D【分析】因为=,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【题目详解】∵=,∴当x=1时,y有最大值5;当x=-1时,y==1;当x=2时,y==4;∴当时,;故选D.【题目点拨】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.7、D【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【题目详解】解:∵ADC=110°,即优弧的度数是220°,∴劣弧的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故选D.【题目点拨】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8、D【解题分析】本题考察二次函数的基本性质,一元二次方程根的判别式等知识点.【题目详解】解:∵,∴抛物线的对称轴<0,∴该抛物线的对称轴在轴左侧,故①正确;∵抛物线与轴最多有一个交点,∴∴关于的方程中∴关于的方程无实数根,故②正确;∵抛物线与轴最多有一个交点,∴当时,≥0正确,故③正确;当时,,故④正确.故选D.【题目点拨】本题的解题关键是熟悉函数的系数之间的关系,二次函数和一元二次方程的关系,难点是第四问的证明,要考虑到不等式的转化.9、D【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答.【题目详解】解:已知一边长为xcm,则另一边长为(6-x)cm.

则y=x(6-x)化简可得y=-x2+6x,(0<x<6),

故选:D.【题目点拨】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般.10、D【分析】连接OB、OC,证明△OBC是等边三角形,得出即可求解.【题目详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴,故选:D.【题目点拨】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.11、B【分析】①根据二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式即可得;②根据时,即可得;③根据二次函数的图象即可知其增减性;④先根据二次函数的对称性求出二次函数的图象与x轴的另一个交点坐标,再结合函数图象即可得.【题目详解】由二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式得:,即二次函数的最大值为,则命题①正确;二次函数的图象与x轴的一个交点为,,则命题②错误;由二次函数的图象可知,当时,y随x的增大而减小,则命题③错误;设二次函数的图象与x轴的另一个交点为,二次函数的对称轴为,与x轴的一个交点为,,解得,即二次函数的图象与x轴的另一个交点为,由二次函数的图象可知,当时,,则命题④正确;综上,正确命题的个数是2,故选:B.【题目点拨】本题考查了二次函数的图象与性质(对称性、增减性、最值)等知识点,熟练掌握二次函数的图象与性质是解题关键.12、A【解题分析】先利用勾股定理求出斜边AB,再求出sinB即可.【题目详解】∵在中,,,,∴,∴.故答案为A.【题目点拨】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.二、填空题(每题4分,共24分)13、1【解题分析】根据sin30°=12【题目详解】sin30°=12【题目点拨】本题考查的知识点是特殊角的三角函数值,解题的关键是熟练的掌握特殊角的三角函数值.14、①④【分析】①由对称轴x=1判断;②根据图象确定a、b、c的符号;③根据对称轴以及B点坐标,通过对称性得出结果;③根据的判别式的符号确定;④比较x=1时得出y1的值与x=4时得出y2值的大小即可;⑤由图象得出,抛物线总在直线的下面,即y2>y1时x的取值范围即可.【题目详解】解:①因为抛物线的顶点坐标A(1,3),所以对称轴为:x=1,则-=1,2a+b=0,故①正确;

②∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故②不正确;

③∵抛物线对称轴为x=1,抛物线与x轴的交点B的坐标为(4,0),∴根据对称性可得,抛物线与x轴的另一个交点坐标为(-2,0),故③不正确;④∵抛物线与x轴有两个交点,∴b2-4ac>0,∴的判别式,=b2-4a(c+3)=b2-4ac-12a,又a<0,∴-12a>0,∴=b2-4ac-12a>0,故④正确;⑤当x=-1时,y1=a-b+c>0;当x=4时,y2=4m+n=0,∴a-b+c>4m+n,故⑤不正确;

⑥由图象得:的解集为x<1或x>4;故⑥不正确;

则其中正确的有:①④.

故答案为:①④.【题目点拨】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b的值都是利用抛物线的对称轴来确定;②抛物线与x轴的交点个数确定其△的值,即b2-4ac的值:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点.15、1【分析】由题意先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B的度数.【题目详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=1°,∴∠B=1°.故答案为:1.【题目点拨】本题考查旋转的性质,注意掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.16、4.2【解题分析】设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x-2,因为AE⊥BC于E,所以在Rt△ABE中,cosB=,又cosB=于是=,解得x=1,即AB=1.所以易求BE=2,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:AB•PE=BE•AE,求得PE的最小值为4.2.点睛:本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE的值是解题的关键17、【分析】利用反比例函数k的几何意义得出a-b=4•OE,a-b=5•OF,求出=6,即可求出答案.【题目详解】如图,∵由题意知:a-b=4•OE,a-b=5•OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案为:.【题目点拨】本题考查了反比例函数图象上点的坐标特征,能求出方程=6是解此题的关键.18、乙【分析】根据方差的含义,可判断谁的成绩较稳定.【题目详解】在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是刻画数据的波动大小程度,方差越小,代表数据波动越小.因此,在本题中,方差越小,代表成绩越稳定,故乙的训练成绩比较稳定.【题目点拨】本题考查方差的概念和含义.三、解答题(共78分)19、(1)4800元;(2)降价60元.【解题分析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.20、(1);(2)6050;(3).【分析】(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50≤x≤90时,y=90;(2)根据W关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内W的最大值;当50≤x≤90时,根据一次函数的性质即可求出在此范围内W的最大值,两个最大值作比较即可得出结论;(3)分当时与当时利用二次函数与一次函数的性质进行得到的取值范围.【题目详解】(1)当时,设.∵图象过(0,40),(50,90),∴解得,∴,∴(2)当时,∵,∴当时,元;当时,∵,∴当时,元.∵,∴当时,元(3)当时,令,解得:,,∵∴当时,利润不低于3600元;当时,∵,即,解得,∴此时;综上,当时,利润不低于3600元.【题目点拨】本题考查了一次函数的应用、二次函数的性质以及待定系数法求一次函数解析式,解题的关键是:分段找出y关于x的函数关系式;根据销售利润=单件利润×销售数量找出W关于x的函数关系式;再利用二次函数的性质解决最值问题.21、详见解析【分析】根据正方形性质得到角的关系,从而根据判定两三角形相似的方法证明△BPQ∽△CDP.【题目详解】证明:四边形是正方形,.,,,,.【题目点拨】此题重点考查学生对两三角形相似的判定的理解,熟练掌握两三角形相似的判定方法是解题的关键.22、(1)(-1,3)(2,3)(3,-1)(2,-1)(3,2)(-1,2),表格见解析;(2).【分析】(1)首先根据题意列出表格,由表格即可求得所有等可能的结果;(2)由(1)可求得所确定的点P落在双曲线y=﹣上的情况,然后利用概率公式求解即可求得答案.【题目详解】(1)列表得:则可能出现的结果共有6个,为(-1,3)(2,3)(3,-1)(2,-1)(3,2)(-1,2),它们出现的可能性相等;(2)∵满足点P(x,y)落在双曲线y=﹣上的结果有2个,为(3,﹣1),(﹣1,3),∴点P落在双曲线上的概率==【题目点拨】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23、(1)见解析;(2)AD=4.5.【分析】(1)若证明BC是半圆O的切线,利用切线的判定定理:即证明AB⊥BC即可;

(2)因为OC∥AD,可得∠BEC=∠D=90°,再有其他条件可判定△BCE∽△BAD,利用相似三角形的性质:对应边的比值相等即可求出AD的长.【题目详解】(1)证明:∵AB是半圆O的直径,

∴BD⊥AD,

∴∠DBA+∠A=90°,

∵∠DBC=∠A,

∴∠DBA+∠DBC=90°即AB⊥BC,

∴BC是半圆O的切线;(2)解:∵OC∥AD,

∴∠BEC=∠D=90°,

∵BD⊥AD,BD=6,

∴BE=DE=3,

∵∠DBC=∠A,

∴△BCE∽△BAD,,即;∴AD=4.5【题目点拨】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.24、(1);(2);(3)【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论