2024届福建省福州市第二中学数学九上期末监测模拟试题含解析_第1页
2024届福建省福州市第二中学数学九上期末监测模拟试题含解析_第2页
2024届福建省福州市第二中学数学九上期末监测模拟试题含解析_第3页
2024届福建省福州市第二中学数学九上期末监测模拟试题含解析_第4页
2024届福建省福州市第二中学数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省福州市第二中学数学九上期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.如果,那么的值等于()A. B. C. D.3.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个 B.2个 C.3个 D.4个4.下列事件是必然事件的是()A.明天太阳从西方升起B.打开电视机,正在播放广告C.掷一枚硬币,正面朝上D.任意一个三角形,它的内角和等于180°5.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()A. B. C. D.6.如图,△ABC是一张周长为18cm的三角形纸片,BC=5cm,⊙O是它的内切圆,小明用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线剪下△AMN,则剪下的三角形的周长为()A. B. C. D.随直线的变化而变化7.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5cm B.10cm C.15cm D.20cm8.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA9.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A. B. C. D.10.下列方程中没有实数根的是()A. B.C. D.二、填空题(每小题3分,共24分)11.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.12.如图,将正方形绕点逆时针旋转至正方形,边交于点,若正方形的边长为,则的长为________.13.如图,在△ABC中,点D、E分别在△ABC的两边AB、AC上,且DE∥BC,如果,,,那么线段BC的长是______.14.已知线段c是线段、的比例中项,且,,则线段c的长度为______.15.方程x(x﹣2)﹣x+2=0的正根为_____.16.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.17.已知甲、乙两种棉花的纤维长度的平均数相等,若甲种棉花的纤维长度的方差,乙种棉花的纤维长度的方差,则甲、乙两种棉花质量较好的是▲.18.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是_____.三、解答题(共66分)19.(10分)如图1,AB、CD是圆O的两条弦,交点为P.连接AD、BC.OM⊥AD,ON⊥BC,垂足分别为M、N.连接PM、PN.图1图2(1)求证:△ADP∽△CBP;(2)当AB⊥CD时,探究PMO与PNO的数量关系,并说明理由;(3)当AB⊥CD时,如图2,AD=8,BC=6,∠MON=120°,求四边形PMON的面积.20.(6分)如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且.判断△ABC和△A′B′C′是否相似,并说明理由.21.(6分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?22.(8分)如图所示,∠DBC=90°,∠C=45°,AC=2,△ABC绕点B逆时针旋转60°得到△DBE,连接AE.(1)求证:△ABC≌△ABE;(2)连接AD,求AD的长.23.(8分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为8千米,仰角为30°.火箭继续直线上升到达点处,此时海岸边处的雷达测得处的仰角增加15°,求此时火箭所在点处与发射站点处的距离.(结果精确到0.1千米)(参考数据:,)24.(8分)如图,已知△ABC中,AB=8,BC=10,AC=12,D是AC边上一点,且AB2=AD•AC,连接BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点G.(1)求BD的长;(2)求证△BGE∽△CEF;(3)连接FG,当△GEF是等腰三角形时,直接写出BE的所有可能的长度.25.(10分)前苏联教育家苏霍姆林斯曾说过:“让学生变聪明的方法,不是补课,不是増加作业量,而是阅读,阅读,再阅读”.课外阅读也可以促进我们养成终身学习的习惯.云南某学校组织学生利用课余时间多读书,读好书,一段时间后,学校对部分学生每周阅读时间进行调查,并绘制了不完整的频数分布表和频数分布直方图,如图所示:时间(时)频数百分比1010%25mn30%a20%1515%根据图表提供的信息,回答下列问题:(1)填空:______,________;(2)请补全频数分布直方图;(3)该校共有3600名学生,估计学生每周阅读时间x(时)在范围内的人数有多少人?26.(10分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m)

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【题目详解】A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【分析】依据,即可得到a=b,进而得出的值.【题目详解】∵,∴3a﹣3b=5b,∴3a=8b,即a=b,∴==.故选D.【题目点拨】本题考查了比例的性质,解决问题的关键是运用内项之积等于外项之积.3、C【题目详解】试题解析:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选C.4、D【分析】必然事件就是一定会发生的事件,依次判断即可.【题目详解】A、明天太阳从西方升起,是不可能事件,故不符合题意;B、打开电视机,正在播放广告是随机事件,故不符合题意;C、掷一枚硬币,正面朝上是随机事件,故不符合题意;D、任意一个三角形,它的内角和等于180°是必然事件,故符合题意;故选:D.【题目点拨】本题是对必然事件的考查,熟练掌握必然事件知识是解决本题的关键.5、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.【题目详解】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为=.故选:A.【题目点拨】此题考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.6、B【分析】如图,设E、F、G分别为⊙O与BC、AC、MN的切点,利用切线长定理得出BC=BD+CF,DM=MG,FN=GN,AD=AF,进而可得答案.【题目详解】设E、F、G分别为⊙O与BC、AC、MN的切点,∵⊙O是△ABC的内切圆,∴BD=BE,CF=CE,AD=AF,∴BD+CF=BC,∵MN与⊙O相切于G,∴DM=MG,FN=GN,∵△ABC的周长为18cm,BC=5cm,∴AD+AF=18-BC-(BD+CF)=18-2BC=8cm,∴△AMN的周长=AM+AN+MG+GN=AM+DM+AN+FN=AD+AF=8cm,故选:B.【题目点拨】本题考查切线长定理,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角;熟练掌握定理是解题关键.7、B【解题分析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm,故选B.8、A【分析】本题可以利用锐角三角函数的定义求解即可.【题目详解】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,sinB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【题目点拨】本题考查三角函数的定义,熟记定义是解题的关键.9、B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【题目详解】解:设扇形的半径为r.由题意:=6π,∴r=9,∴S扇形==27π,故选B.【题目点拨】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.10、D【分析】分别计算出判别式△=b2−4ac的值,然后根据判别式的意义分别判断即可.【题目详解】解:A、△==5>0,方程有两个不相等的实数根;B、△=32−4×1×2=1>0,方程有两个不相等的实数根;C、△=112−4×2019×(−20)=161641>0,方程有两个不相等的实数根;D、△=12−4×1×2=−7<0,方程没有实数根.故选:D.【题目点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.二、填空题(每小题3分,共24分)11、60°.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【题目详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.【题目点拨】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.12、【分析】连接AE,由旋转性质知AD=AB′=3、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=∠B′AD=30°,由DE=ADtan∠DAE可得答案.【题目详解】解:如图,连接AE,∵将边长为3的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=3,∠BAB′=30°,∠DAB=90°∴∠B′AD=60°,在Rt△ADE和Rt△AB′E中,,∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=∠B′AD=30°,∴DE=ADtan∠DAE=3×=,故答案为.【题目点拨】此题主要考查全等、旋转、三角函数的应用,解题的关键是熟知旋转的性质及全等三角形的判定定理.13、;【分析】根据DE∥BC可得,再由相似三角形性质列比例式即可求解.【题目详解】解:,,,又∵,,,,解得:故答案为:.【题目点拨】本题主要考查了平行线分线段成比例定理的应用,找准对应线段是解题的关键.14、6【解题分析】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故答案为6.15、x=1或x=2【分析】利用提取公因式法解方程即可得答案.【题目详解】∵x(x﹣2)﹣(x﹣2)=0,∴(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,解得:x=2或x=1,故答案为:x=1或x=2【题目点拨】本题考查解一元二次方程,一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.16、上午8时【解题分析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为上午8时.点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题.17、甲.【解题分析】方差的运用.【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.由于,因此,甲、乙两种棉花质量较好的是甲.18、k≤5且k≠1.【解题分析】试题解析:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1.考点:根的判别式.三、解答题(共66分)19、(1)证明见解析;(2)PMO=PNO,理由见解析;(3)S平行四边形PMON=6【分析】(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM⊥AD,ON⊥BC得到M、N为AB、CD的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP为平行四边形即可解题.【题目详解】(1)因为同弧所对的圆周角相等,所以∠A=∠C,∠D=∠B,所以△ADP∽△CBP.(2)PMO=PNO因为OM⊥AD,ON⊥BC,所以点M、N为AB、CD的中点,又AB⊥CD,所以PM=AD,PN=BC,所以,∠A=∠APM,∠C=∠CPN,所以∠AMP=∠CNP,得到PMO与PNO.(3)连接CO并延长交圆O于点Q,连接BD.因为AB⊥CD,AM=AD,CN=BC,所以PM=AD,PN=BC.由三角形中位线性质得,ON=.因为CQ为圆O直径,所以∠QBC=90°,则∠Q+∠QCB=90°,由∠DPB=90°,得∠PDB+∠PBD=90°,而∠PDB=∠Q,所以∠QCB=∠PBD,所以BQ=AD,所以PM=ON.同理可得,PN=OM.所以四边形MONP为平行四边形.S平行四边形PMON=6【题目点拨】本题考查了相似三角形的判定和性质,圆的基本知识,圆周角的性质,直角三角形的性质,平行四边形的判定,综合性强,熟悉圆周角的性质是求解(1)的关键,利用斜边中线等于斜边一半这一性质是求解(2)的关键,证明四边形MONP为平行四边形是求解(3)的关键.20、△ABC∽△A'B'C',理由见解析【分析】由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得△ABD∽△A'B'D',进而可得∠B=∠B',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC∽△A'B'C'.【题目详解】△ABC∽△A'B'C',理由:∵∴△ABD∽△A'B'D',∴∠B=∠B',∵AD、A'D'分别是△ABC和△A'B'C'的中线∴,,∴,在△ABC和△A'B'C'中∵,且∠B=∠B'∴△ABC∽△A'B'C'.【题目点拨】本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似.21、1米/秒【解题分析】分析:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.本题解析:解:过点C作CD⊥AB于点D.设AD=x米,小明的行走速度是a米/秒.∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x(米).在Rt△BCD中,∵∠B=30°,∴BC==2x(米).∵小军的行走速度为米/秒,若小明与小军同时到达山顶C处,∴=,解得a=1.答:小明的行走速度是1米/秒.22、(1)见解析;(2).【分析】(1)根据旋转的性质得到∠DBE=∠ABC,∠EBC=60°,BE=BC,根据全等三角形的判定定理即可得到结论;(2)连接AD,根据旋转的性质得到DE=AC,∠BED=∠C,DE=AC=2,根据全等三角形的性质得到∠BEA=∠C,AE=AC=2,根据等腰三角形的性质即可得到结论.【题目详解】(1)证明:∵△ABC绕点B逆时针旋转60°得到△DBE,∴∠DBE=∠ABC,∠EBC=60°,BE=BC,∵∠DBC=90°,∴∠DBE=∠ABC=30°,∴∠ABE=30°,在△ABC与△ABE中,,∴△ABC≌△ABE(SAS);(2)解:连接AD,∵△ABC绕点B逆时针旋转60°得到△DBE,∴DE=AC,∠BED=∠C,DE=AC=2,∵△ABC≌△ABE,∴∠BEA=∠C,AE=AC=2,∵∠C=45°,∴∠BED=∠BEA=∠C=45°,∴∠AED=90°,DE=AE,∴AD=AE=2.【题目点拨】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,熟练掌握旋转的性质是解题的关键.23、此时火箭所在点处与发射站点处的距离约为.【解题分析】利用已知结合锐角三角函数关系得出的长.【题目详解】解:如图所示:连接,由题意可得:,,,,在直角中,.在直角中,.答:此时火箭所在点处与发射站点处的距离约为.【题目点拨】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.24、(1);(2)见解析;(3)4或﹣5+或﹣3+【分析】(1)证明△ADB∽△ABC,可得,由此即可解决问题.(2)想办法证明∠BEA=∠EFC,∠DBC=∠C即可解决问题.(3)分三种情形构建方程组解决问题即可.【题目详解】(1)∵AB=8,AC=12,又∵AB2=AD•AC∴∵AB2=AD•AC,∴,又∵∠BAC是公共角∴△ADB∽△ABC,∴∴=∴.(2)∵AC=12,,∴,∴BD=CD,∴∠DBC=∠C,∵△ADB∽△ABC∴∠ABD=∠C,∴∠ABD=∠DBC,∵∠BEF=∠C+∠EFC,即∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE.(3)如图中,过点A作AH∥BC,交BD的延长线于点H,设BE=x,CF=y,∵AH∥BC,∴====,∵BD=CD=,AH=8,∴AD=D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论