版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省沧州市东光县数学九年级第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的大小等于()A.25° B.20° C.40° D.50°2.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小 D.的最小值为-33.下列图形中是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个4.如图,内接于⊙,是⊙的直径,,点是弧上一点,连接,则的度数是()A.50° B.45° C.40° D.35°5.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.6.点P(x﹣1,x+1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知正比例函数y1的图象与反比例函数y2图象相交于点A(2,4),下列说法正确的是(A.反比例函数y2的解析式是B.两个函数图象的另一交点坐标为(2,-4)C.当x<-2或0<x<2时,yD.正比例函数y1与反比例函数y2都随8.在Rt△ABC中,∠C=90°,、、所对的边分别为a、b、c,如果a=3b,那么∠A的余切值为()A. B.3 C. D.9.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)11.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为12.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,是的直径,弦则阴影部分图形的面积为_________.14.如图,在中,,于,已知,则__________.15.如图,是的边上一点,且点的横坐标为3,,则______.16.如图,直线与两坐标轴相交于两点,点为线段上的动点,连结,过点作垂直于直线,垂足为,当点从点运动到点时,则点经过的路径长为__________.17.已知反比例函数,在其位于第三像限内的图像上有一点M,从M点向y轴引垂线与y轴交于点N,连接M与坐标原点O,则ΔMNO面积是_____.18.如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线,,是与水平线垂直的两根支柱,米,米,米.(1)如图1,为了安全美观,准备拆除支柱、,在水平线上另找一点作为地面上的支撑点,用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_________.(2)如图2,在水平线上增添一张米长的椅子(在右侧),用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_______________.三、解答题(共78分)19.(8分)如图1,在平面直角坐标系中,已知的半径为5,圆心的坐标为,交轴于点,交轴于,两点,点是上的一点(不与点、、重合),连结并延长,连结,,.
(1)求点的坐标;(2)当点在上时.①求证:;②如图2,在上取一点,使,连结.求证:;(3)如图3,当点在上运动的过程中,试探究的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.20.(8分)如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:.21.(8分)如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)22.(10分)如图,是半径为1的的内接正十边形,平分(1)求证:;(2)求证:23.(10分)如图,正方形ABCD中,E,F分别是AB,BC边上的点,AF与DE相交于点G,且AF=DE.求证:(1)BF=AE;(2)AF⊥DE.24.(10分)“十一”黄金周期间,我市享有“江南八达岭”美誉的江南长城旅游区,为吸引游客组团来此旅游,特推出了如下门票收费标准:标准一:如果人数不超过20人,门票价格60元/人;标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于50元/人.(1)若某单位组织23名员工去江南长城旅游区旅游,购买门票共需费用多少元?(2)若某单位共支付江南长城旅游区门票费用共计1232元,试求该单位这次共有多少名员工去江南长城旅游区旅游?25.(12分)如图,四边形ABCD内接于⊙O,∠1至∠6是六个不同位置的圆周角.(1)分别写出与∠1、∠2相等的圆周角,并求∠1+∠2+∠3+∠4的值;(2)若∠1-∠2=∠3-∠4,求证:AC⊥BD.26.如图,O是所在圆的圆心,C是上一动点,连接OC交弦AB于点D.已知AB=9.35cm,设A,D两点间的距离为cm,O,D两点间的距离为cm,C,D两点间的距离为cm.小腾根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值:/cm0.001.002.003.004.005.006.007.108.009.35/cm4.933.992.281.701.592.042.883.674.93/cm0.000.941.832.653.233.342.892.051.260.00(2)①在同一平面直角坐标系中,描出表中各组数值所对应的点(,),(,),并画出(1)中所确定的函数,的图象;②观察函数的图象,可得cm(结果保留一位小数);(3)结合函数图象,解决问题:当OD=CD时,AD的长度约为cm(结果保留一位小数).
参考答案一、选择题(每题4分,共48分)1、C【解题分析】连接OA,根据切线的性质,即可求得∠C的度数.【题目详解】如图,连接OA.∵AC是⊙O的切线,∴∠OAC=90°.∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选C.【题目点拨】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.2、D【解题分析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.3、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【题目详解】从左起第2、4个图形是中心对称图形,故选B.【题目点拨】本题考查了中心对称图形的概念,注意掌握图形绕某一点旋转180°后能够与自身重合.4、A【分析】根据直径所对的圆周角是直角可知∠ABC=90°,计算出∠BAC的度数,再根据同弧所对的圆周角相等即可得出∠D的度数.【题目详解】解:∵是⊙的直径,∴∠ABC=90°,又∵,∴∠BAC=90°-40°=50°,又∵∠BAC与所对的弧相等,∴∠D=∠BAC=50°,故答案为A.【题目点拨】本题考查了直径所对的圆周角是直角、同弧所对圆周角相等等知识点,解题的关键是熟知直径所对的圆周角是直角及同弧所对圆周角相等.5、D【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【题目详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【题目点拨】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.6、D【解题分析】本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1)x-1>0,x+1>0,解得x>1,故x-1>0,x+1>0,点在第一象限;(2)x-1<0,x+1<0,解得x<-1,故x-1<0,x+1<0,点在第三象限;(3)x-1>0,x+1<0,无解;(4)x-1<0,x+1>0,解得-1<x<1,故x-1<0,x+1>0,点在第二象限.故点P不能在第四象限,故选D.7、C【解题分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可判断求解.【题目详解】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点∴正比例函数y1=2x∴两个函数图象的另一个角点为(-2,-4)∴A,B选项错误∵正比例函数y1=2x中,y随x的增大而增大,反比例函数y2=8∴D选项错误∵当x<-2或0<x<2时,y∴选项C正确故选:C.【题目点拨】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.8、A【分析】根据锐角三角函数的定义,直接得出cotA=,即可得出答案.【题目详解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故选择:A.【题目点拨】此题主要考查了锐角三角函数的定义,熟练地应用锐角三角函数的定义是解决问题的关键.9、D【分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【题目点拨】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、C【解题分析】直接利用位似图形的性质得出对应点坐标乘以得出即可.【题目详解】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选C.【题目点拨】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.11、D【解题分析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.12、B【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【题目详解】圆锥的侧面积=2π×3×5÷2=15π.故选:B.【题目点拨】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.二、填空题(每题4分,共24分)13、【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,求出扇形COB面积,即可得出答案.【题目详解】解:∵AB是⊙O的直径,弦CD⊥AB,CD=2,∴CE=CD=,∠CEO=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC==2,∴阴影部分的面积S=S扇形COB=,
故答案为:.【题目点拨】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.14、【分析】根据,可设AC=4x,BC=5x,利用勾股定理可得AB=3x,则.【题目详解】在Rt△ABC中,∵∴设AC=4x,BC=5x∴∴故答案为:.【题目点拨】本题考查求正切值,熟练掌握三角函数的定义是解题的关键.15、【分析】由已知条件可得出点P的纵坐标为4,则就等于点P的纵坐标与其横坐标的比值.【题目详解】解:由题意可得,∵,∴点P的纵坐标为4,∴就等于点P的纵坐标与其横坐标的比值,∴.故答案为:.【题目点拨】本题考查的知识点是正弦与正切的定义,熟记定义内容是解此题的关键.16、【分析】根据直线与两坐标轴交点坐标的特点可得A、B两点坐标,由题意可得点M的路径是以AB的中点N为圆心,AB长的一半为半径的,求出的长度即可.【题目详解】解:∵AM垂直于直线BP,∴∠BMA=90°,∴点M的路径是以AB的中点N为圆心,AB长的一半为半径的,连接ON,∵直线y=-x+4与两坐标轴交A、B两点,∴OA=OB=4,∴ON⊥AB,∴∠ONA=90°,∵在Rt△OAB中,AB=,∴ON=,∴故答案为:.【题目点拨】本题考查了一次函数的综合题,涉及了两坐标轴交点坐标及点的运动轨迹,难点在于根据∠BMA=90°,判断出点M的运动路径是解题的关键,同学们要注意培养自己解答综合题的能力.17、3【分析】根据反比例函数系数k的几何意义得到:△MNO的面积为|k|,即可得出答案.【题目详解】∵反比例函数的解析式为,∴k=6,∵点M在反比例函数图象上,MN⊥y轴于N,∴S△MNO=|k|=3,故答案为:3【题目点拨】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.18、【分析】(1)以点O为原点,OC所在直线为y轴,垂直于OC的直线为x轴建立平面直角坐标系,利用待定系数法确定二次函数的解析式后延长BD到M使MD=BD,连接AM交OC于点P,则点P即为所求;利用待定系数法确定直线M'A'的解析式,从而求得点P′的坐标,从而求得O、P之间的距离;(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.【题目详解】(1)如图建立平面直角坐标系(以点为原点,所在直线为轴,垂直于的直线为轴),延长到使,连接交于点,则点即为所求.设抛物线的函数解析式为,由题意知旋转后点的坐标为.带入解析式得抛物线的函数解析式为:,当时,,点的坐标为,点的坐标为代入,求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.点的坐标为,点坐标为代入,,的坐标求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.【题目点拨】本题考查了二次函数的应用,解题的关键是从实际问题中整理出二次函数模型,利用二次函数的知识解决生活中的实际问题.三、解答题(共78分)19、(1)(0,4);(2)①详见解析;②详见解析;(3)不变,为.【分析】(1)连结,在中,为圆的半径5,,由勾股定理得(2)①根据圆的基本性质及圆周角定理即可证明;②根据等腰三角形的性质得到,根据三角形的外角定理得到,由①证明得到,即可根据相似三角形的判定进行求解;(3)分别求出点C在B点时和点C为直径AC时,的值,即可比较求解.【题目详解】(1)连结,在中,=5,,∴∴A(0,4).(2)连结,故,则∵∠ABD+∠ACD=180°,∠HCD+∠ACD=180°,∴∵与是弧所对的圆周角∴=又∴即②∵∴∵,且由(2)得∴∴在与中∴(3)①点C在B点时,如图,AC=2AO=8,BC=0,CD=BD=∴==;当点C为直径AC与圆的交点时,如图∴AC=2r=10∵O,M分别是AB、AC中点,∴BC=2OM=6,∴C(6,-4)∵D(8,0)∴CD=∴==故的值不变,为.【题目点拨】此题主要考查圆的综合题,解题的关键是熟知圆周角定理、勾股定理及相似三角形的判定.20、见解析.【分析】根据角平分线的定义,可得∠BAC=∠DAC,然后根据平行线的性质,可得∠BAC=∠ACE,从而求出∠DAC=∠ACE,最后根据在同圆或等圆中,相等的圆周角所对的弧也相等即可证出结论.【题目详解】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵AB∥CE,∴∠BAC=∠ACE,∴∠DAC=∠ACE,∴.【题目点拨】此题考查的是角平分线的定义、平行线的性质和圆的基本性质,掌握在同圆或等圆中,相等的圆周角所对的弧也相等是解决此题的关键.21、河流的宽度CF的值约为37m.【分析】过点C作CE∥AD,交AB于点E,则四边形AECD是平行四边形,利用平行四边形的性质可得出AE、EB及∠CEF的值,通过解直角三角形可得出EF,BF的长,结合EF﹣BF=50m,即可求出CF的长.【题目详解】如图,过点C作CE∥AD,交AB于点E,∵CD∥AE,CE∥AD,∴四边形AECD是平行四边形,∵CD=50m,AB=100m,∴AE=CD=50m,EB=AB﹣AE=50m,∠CEF=∠DAB=30°.在Rt△ECF中,EF==CF,∵∠CBF=70°,∴在Rt△BCF中,BF=,∵EF﹣BF=50m,∴CF﹣=50,∴CF≈37m.答:河流的宽度CF的值约为37m.【题目点拨】本题主要考查了解直角三角形的应用,不规则图形可以通过作平行线转化为平行四边形与直角三角形的问题进行解决,熟练掌握三角函数的定义是解题关键.22、(1)详见解析;(2)详见解析【分析】(1)根据题意得出角相等得出△A1A2P∽△A1OA2,再根据相似三角形的性质即可得出答案;(2)设A1A2=x,得出OP=PA2=A1A2=x,A1P=1-x,再代入中即可求出答案.【题目详解】证明:(1)∵A1A2A3…A10是半径为1的⊙O的内接正十边形,A2P平分∠OA2A1∴∠A1OA2=36°,∠A1=∠OA2A1=72°,∠A1A2P=∠O=36°∴∠A1PA2=72°,OP=PA2,∴△A1A2P∽△A1OA2,∴A1A22=A1P•OA1(2)设A1A2=x,则OP=PA2=A1A2=x,∴A1P=1-x,由(1)得A1A22=A1P•OA1∴,∴,解得,(负值舍去)∴,即【题目点拨】本题考查了正十边形的性质及相似三角形的判定及性质定理,能够根据正十边形的性质得出角的度数是解题的关键.23、(1)见解析;(2)见解析.【解题分析】(1)根据正方形的性质得到AD=AB,∠DAE=∠ABE=90°,根据全等三角形的性质即可得到结论;
(2)根据全等三角形的性质得到∠ADE=∠BAF,根据余角的性质即可得到结论.【题目详解】证明:(1)∵四边形ABCD是正方形,∴AD=AB,∠DAE=∠ABE=90°,
在Rt△DAE与Rt△ABF中,AD=ABDE=AF,
∴Rt△DAE≌Rt△ABF(HL),
∴BF=AE;
(2)∵Rt△DAE≌Rt△ABF,
∴∠ADE=∠BAF,
∵∠ADE=∠AED=90°,
∴∠BAF=∠AEG=90°,
∴∠AGE=90°,
【题目点拨】本题考查正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.24、(1)112;(2)22【分析】(1)利用单价=原价﹣2×超出20人的人数,可求出22人去旅游时门票的单价,再利用总价=单价×数量即可求出结论;(2)设该单位这次共有x名员工去江南长城旅游区旅游,利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年四川川投康达欣大药房有限责任公司招聘备考题库及答案详解一套
- 2026年乐清市人力资源和社会保障局关于公开招聘协管员的备考题库及一套参考答案详解
- 银保部内控制度
- 哈师大内控制度
- 冠字号内控制度
- 陕西省内控制度汇编
- 医院经济合同内控制度
- 建工内控制度汇编
- 社保中心基金内控制度
- 国企贸易内控制度
- 伊利并购澳优的财务绩效分析
- 安徽省合肥市蜀山区2024-2025学年上学期八年级数学期末试卷
- 有限空间大型污水井作业工岗位考试试卷及答案
- 车险组长年终工作总结
- 电商售后客服主管述职报告
- 2025昆明市呈贡区城市投资集团有限公司及下属子公司第一批招聘(12人)笔试考试参考试题及答案解析
- 上海证券有限责任公司校招职位笔试历年参考题库附带答案详解
- 保安员冬季安全知识培训课件
- 智慧园区项目合作协议书
- 遗体火化师招聘考核试卷及答案
- 2025年大学消防指挥专业题库- 火灾现场搜救与救援
评论
0/150
提交评论