版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省娄底市石井中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.曲线的极坐标方程化为直角坐标方程为(
)A
B
C
D参考答案:B2.已知命题,,则(
)A.,
B.,C.,≤
D.,≤参考答案:C略3.已知椭圆上一点关于原点的对称点为,为其右焦点,若,设,且,则该椭圆离心率的取值范围为(
)
A、
B、
C、
D、参考答案:A4.设A:,若B是A成立的必要不充分条件,则m的取值范围是()A.m<l B.m≤1 C.m≥1 D.m>1参考答案:D【考点】必要条件、充分条件与充要条件的判断.【专题】计算题.【分析】先化简集合A,利用B是A成立的必要不充分条件,可得A?B,从而可求m的取值范围.【解答】解:集合A可化为A=(0,1),集合B=(0,m)∵B是A成立的必要不充分条件∴(0,1)?(0,m)∴m>1故选D.【点评】本题以集合为载体,考查四种条件,考查集合的包含关系,利用B是A成立的必要不充分条件,得A?B是解题的关键.5.假设有两个变量与的列联表如下表:
abcd
对于以下数据,对同一样本能说明x与y有关系的可能性最大的一组为(
)A.,,, B.,,,C.,,, D.,,,参考答案:B【分析】当ad与bc差距越大,两个变量有关的可能性就越大,检验四个选项中所给的ad与bc的差距,只有第二个选项差距大,得到结果.【详解】解:根据观测值求解的公式可以知道,
当ad与bc差距越大,两个变量有关的可能性就越大,
检验四个选项中所给的ad与bc的差距:
显然中最大.故答案为B.【点睛】本题考查独立性检验,得出ad与bc差距越大,两个变量有关的可能性就越大是解决问题的关键,属基础题.6.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+ B.4+ C.2+2 D.5参考答案:C【考点】由三视图求面积、体积.【分析】根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.【解答】解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.7.若变量满足约束条件,则的最大值为(
)A.2
B.3
C.4
D.5参考答案:B考点:简单的线性规划问题.8.经过点,且与直线垂直的直线方程是(
)A. B.C. D.参考答案:A略9.已知中心在原点,焦点F1、F2在x轴上的双曲线经过点P(4,2),△PF1F2的内切圆与x轴相切于点Q(2,0),则该双曲线的离心率为()A.B.C.D.参考答案:A【考点】双曲线的简单性质.【分析】根据三角形内切圆的性质结合双曲线的定义,求出a,c即可得到结论.【解答】解:中心在原点,焦点F1、F2在x轴上的双曲线为﹣=1,作出对应的图象如图:设三个切点分别为A,B,C,∵△PF1F2的内切圆与x轴相切于点Q(2,0),∴|F1Q|=|F1C|=c+2,∴|F2Q|=|F2B|=c﹣2,∴由双曲线的定义得||F1P|﹣|F2P|=|F1C|﹣|F2B|=c+2﹣(c﹣2)=4=2a,∴a=2,∵双曲线经过点P(4,2),∴﹣=1,即=1,则b2=4,c===2,则双曲线的离心率e===,故选:A10.已知物体的运动方程为s=t2+(t是时间,s是位移),则物体在时刻t=2时的速度为(
)参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.点P在直线上,O为原点,则的最小值是
参考答案:略12.已知直线经过点,,则m=▲,直线与直线l垂直的充要条件是a=▲.参考答案:3;-113.已知A、B是椭圆+=1的两个顶点,C、D是椭圆上两点,且分别在AB两侧,则四边形ABCD面积最大值是.参考答案:【考点】椭圆的简单性质.【分析】四边形ABCD面积=S△ABD+S△ABC,AC是固定的直线,可判断两条平行直线与AB平行时,切点为C,D,此时h1,h2最大,面积最大时,利用导数求出D(2,)再利用对称性得出C(﹣2,),|AC|=5,最后利用点到直线的距离,求出即可.【解答】解:∵A、B是椭圆+=1的两个顶点,∴A(4,0),B(0,3),∴直线AB的方程为:3x﹣4y﹣12=0,当如图两条平行直线与AB平行时,切点为C,D,此时四边形ABCD面积最大值:S=AC(h1+h2),kAC=y=3,y′==x=2,y=,D(2,)根据对称性可知:C(﹣2,),|AC|=5h1=,h2=,S=AC(h1+h2)=××=【点评】本题考查了椭圆的几何性质,直线与椭圆的位置故关系,利用数形结合的思想判断出最值的位置,再利用导数求解,即可得需要的点,用公式求解即可.14.当实数变化时,直线与直线都过一个定点,记点的轨迹为曲线,为曲线上任意一点.若点,则的最大值为
.参考答案:.15.函数的定义域是__________.参考答案:【分析】根据函数的解析式,列出使解析式有意义的不等式组,求出解集即可.【详解】要使函数=有意义,则,解得,即函数=的定义域为.故答案为:.【点睛】本题考查了根据函数解析式求定义域的应用问题,是基础题目.16.将二进制数101101(2)化为八进制数,结果为________.参考答案:55(8)17.已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,若直线l被圆C截得的弦长最短,则m的值为.参考答案:﹣【考点】直线与圆的位置关系.【分析】由于直线过定点M(3,1),点M在圆C:(x﹣1)2+(y﹣2)2=25的内部,故直线被圆截得的弦长最短时,CM垂直于直线l,根据它们的斜率之积等于﹣1求出m的值.【解答】解:直线l:(2m+1)x+(m+1)y﹣7m﹣4=0即(x+y﹣4)+m(2x+y﹣7)=0,过定点M(3,1),由于点M在圆C:(x﹣1)2+(y﹣2)2=25的内部,故直线被圆截得的弦长最短时,CM垂直于直线l,故它们的斜率之积等于﹣1,即=﹣1,解得m=﹣,故答案为:﹣.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-.求函数f(x)的解析式.参考答案:略19.(本小题满分12分)如图示,过抛物线的焦点F的直线l交抛物线于点A,B,交其准线于C,若|BC|=2|BF|,且|AC|=5,求此抛物线的方程。
参考答案:20.(本小题满分13分)已知圆C:过点A(3,1),且过点P(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.(1)求切线PF的方程;(2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程。(3)若Q为抛物线E上的一个动点,求的取值范围.参考答案:解:(1)点A代入圆C方程,得.∵m<3,∴m=1.圆C:.设直线PF的斜率为k,则PF:,即.∵直线PF与圆C相切,∴.解得.当k=时,直线PF与x轴的交点横坐标为,不合题意,舍去.当k=时,直线PF与x轴的交点横坐标为-4,∴符合题意,∴直线PF的方程为y=x+2,(2)设抛物线标准方程为y2=-2px,∵F(-4,0),∴p=8,∴抛物线标准方程为y2=-16x(3),设Q(x,y),,.∵y2=-16x,∴.∴的取值范围是(-∞,30].略21.(本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求点A到平面PCD的距离.参考答案:解法一:(Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,所以PO⊥平面ABCD.(Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC.由(Ⅰ)知PO⊥OB,∠PBO为锐角,所以∠PBO是异面直线PB与CD所成的角.因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=,在Rt△POA中,因为AP=,AO=1,所以OP=1,在Rt△PBO中,PB=,cos∠PBO=,所以异面直线PB与CD所成的角的余弦值为.(Ⅲ)由(Ⅱ)得CD=OB=,在Rt△POC中,PC=,所以PC=CD=DP,S△PCD=·2=.又S△=设点A到平面PCD的距离h,由VP-ACD=VA-PCD,得S△ACD·OP=S△PCD·h,即×1×1=××h,解得h=.解法二:(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz.则A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1).所以=(-1,1,0),=(t,-1,-1),∞〈、〉=,所以异面直线PB与CD所成的角的余弦值为,(Ⅲ)设平面PCD的法向量为n=(x0,y0,x0),由(Ⅱ)知=(-1,0,1),=(-1,1,0),则n·=0,所以-x0+x0=0,n·=0,-x0+y0=0,
即x0=y0=x0,取x0=1,得平面的一个法向量为n=(1,1,1).又=(1,1,0).从而点A到平面PCD的距离d=22.在平面直角坐标系xOy中,椭圆=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0),左、右顶点分别为A,B,离心率为,动点P到F1,F2的距离的平方和为6.(1)求动点P的轨迹方程;(2)若,,Q为椭圆上位于x轴上方的动点,直线DM?CN,BQ分别交直线m于点M,N.(i)当直线AQ的斜率为时,求△AMN的面积;(ii)求证:对任意的动点Q,DM?CN为定值.参考答案:考点:直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(1)利用动点P到F1,F2的距离的平方和为6,建立方程,化简可得P的轨迹方程;(2)确定椭圆的方程,求出M、N的坐标,(i)当直线AQ的斜率为时,直线方程与椭圆方程联立,表示出三角形的面积,即可求△AMN的面积;(ii)表示出DM,CN,计算DM?CN,可得定值.解答:(1)解:设P(x,y),则,即(x+1)2+y2+(x﹣1)2+y2=6,整理得,x2+y2=2,所以动点P的轨迹方程为x2+y2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 催化重整装置操作工岗前交接考核试卷含答案
- 玩具制作工班组考核知识考核试卷含答案
- 碱减量操作工变更管理水平考核试卷含答案
- 林业有害生物防治员安全实操知识考核试卷含答案
- 电力电容器及其装置制造工复试竞赛考核试卷含答案
- 情绪与估值11月第2期:换手率回落成长板块pe估值分位下行
- 拖拉机热处理加工生产线操作调整工安全知识宣贯知识考核试卷含答案
- 中药茶剂工安全素养水平考核试卷含答案
- 抽纱挑编工道德知识考核试卷含答案
- 商场卫生检查考核制度
- 2026长治日报社工作人员招聘劳务派遣人员5人备考题库及答案1套
- 河道清淤作业安全组织施工方案
- 2026年1月1日起施行的《兵役登记工作规定》学习与解读
- GB/T 46831-2025塑料聚丙烯(PP)等规指数的测定低分辨率核磁共振波谱法
- 2021海湾消防 GST-LD-8318 紧急启停按钮使用说明书
- 2025侵袭性肺真菌病指南解读
- 烟花爆竹零售经营安全责任制度
- 苏州工业园区领军创业投资有限公司招聘备考题库新版
- 葡萄种植课件
- 2023年和田地区直遴选考试真题汇编含答案解析(夺冠)
- ICG荧光导航在肝癌腹腔镜解剖性肝切除中的应用2026
评论
0/150
提交评论