版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省朔州怀仁县联考九年级数学第一学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25° B.5tan65° C.5cos25° D.5tan25°2.关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为()A.1 B.2 C.3 D.73.有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是()A.n(n﹣1)=15 B.n(n+1)=15C.n(n﹣1)=30 D.n(n+1)=304.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>25.已知函数的图象过点,则该函数的图象必在()A.第二、三象限 B.第二、四象限C.第一、三象限 D.第三、四象限6.将抛物线向右平移个单位后,得到的抛物线的解析式是()A. B. C. D.7.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A. B. C. D.8.下列一元二次方程中,两实数根之和为3的是()A. B. C. D.9.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=310.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形不一定是平行四边形D.对角线互相垂直平分且相等的四边形一定是正方形11.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A. B. C. D.12.如图,是正方形的外接圆,点是上的一点,则的度数是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,AOB与COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为_____.14.若(m-1)+2mx-1=0是关于x的一元二次方程,则m的值是______.15.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.16.计算:sin30°+tan45°=_____.17.如图,点是矩形的对角线上一点,正方形的顶点在边上,则的值为__________.18.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为_____m.三、解答题(共78分)19.(8分)已知:如图,四边形ABCD是矩形,过点D作DF∥AC交BA的延长线于点F.(1)求证:四边形ACDF是平行四边形;(2)若AB=3,DF=5,求△AEC的面积.20.(8分)若二次函数y=ax2+bx+c的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.21.(8分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.(1)小明选择补给站C(球王故里)的概率是多少?(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.22.(10分)先化简,再求值:÷(1+x+),其中x=tan60°﹣tan45°.23.(10分)如图,四边形是正方形,连接,将绕点逆时针旋转得,连接,为的中点,连接,.(1)如图1,当时,求证:;(2)如图2,当时,(1)还成立吗?请说明理由.24.(10分)如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?25.(12分)用适当的方法解下列一元二次方程:(1)x(2x﹣5)=4x﹣1.(2)x2+5x﹣4=2.26.如图,抛物线经过,两点,且与轴交于点,抛物线与直线交于,两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点,使得是以为底边的等腰三角形?若存在,请直接写出点的坐标;若不存在,说明理由.(3)点在轴上且位于点的左侧,若以,,为顶点的三角形与相似,求点的坐标.
参考答案一、选择题(每题4分,共48分)1、C【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【题目详解】在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【题目点拨】本题考查了解直角三角形的问题,掌握解直角三角形及其应用是解题的关键.2、C【解题分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【题目详解】解:把x=2代入程x2+bx﹣10=0得4+2b﹣10=0解得b=1.故选C.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3、C【解题分析】由于每两个队之间只比赛一场,则此次比赛的总场数为:场.根据题意可知:此次比赛的总场数=15场,依此等量关系列出方程即可.【题目详解】试题解析:∵有支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为∴共比赛了15场,即故选C.4、D【分析】根据一元二次方程有两个不相等的实数根,得△即可求解.【题目详解】∵一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△解得k>2.故选D.【题目点拨】本题考查一元二次方程△与参数的关系,列不等式是解题关键.5、B【解题分析】试题分析:对于反比例函数y=,当k>0时,函数图像在一、三象限;当k<0时,函数图像在二、四象限.根据题意可得:k=-2.考点:反比例函数的性质6、B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向右平移3个单位长度得点(0,3),然后根据顶点式写出平移后的抛物线解析式.【题目详解】解:将抛物线向右平移个单位后,得到的抛物线的解析式.故选:B【题目点拨】本题考查的是抛物线的平移.抛物线的平移可根据平移规律来写,也可以移动顶点坐标,根据平移后的顶点坐标代入顶点式,即可求解.7、B【题目详解】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B8、D【分析】根据根与系数的关系,要使一元二次方程中,两实数根之和为3,必有△≥0且,分别计算即可判断.【题目详解】解:A、∵a=1,b=3,c=-3,∴,;B、∵a=2,b=-3,c=-3,∴,;C、∵a=1,b=-3,c=3,∴,原方程无解;D、∵a=1,b=-3,c=-3,∴,.故选:D.【题目点拨】本题考查根与系数关系,根的判别式.在本题中一定要注意需先用根的判别式判定根的情况,若方程有根方可用根与系数关系.9、B【分析】把常数项移到方程右边,再把方程两边加上1,然后把方程作边写成完全平方形式即可.【题目详解】解:∵x1+1x﹣1=0,∴x1+1x+1=1,∴(x+1)1=1.故选B.【题目点拨】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.10、D【分析】根据矩形的判定、菱形的判定、平行四边形和正方形的判定判断即可.【题目详解】解:A、对角线相等的平行四边形是矩形,原命题是假命题;B、对角线互相垂直的平行四边形是菱形,原命题是假命题;C、对角线互相平分的四边形一定是平行四边形,原命题是假命题;D、对角线互相垂直平分且相等的四边形一定是正方形,原命题是真命题;故选:D.【题目点拨】此题主要考查了命题与定理,正确把握特殊四边形的判定方法是解题关键.11、C【解题分析】利用黑色区域的面积除以游戏板的面积即可.【题目详解】黑色区域的面积=3×33×12×23×1=4,所以击中黑色区域的概率.故选C.【题目点拨】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.12、C【分析】首先连接OB,OA,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得的度数.【题目详解】解:连接OB,OA,∵⊙O是正方形ABCD的外接圆,∴∠BOA=90°,∴=∠BOA=45°.故选:C.【题目点拨】此题考查了圆周角定理与圆的内接多边形、正方形的性质等知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.二、填空题(每题4分,共24分)13、1【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明OAB∽OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为1.【题目详解】解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴OAB∽OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(b,0),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为:1.【题目点拨】本题综合考查了相似三角形的判定与性质,平行线的性质,线段的中点坐标,反比例函数的性质,三角形的面积公式等知识,重点掌握反比例函数的性质,难点根据三角形的面积求反比例函数系数的值.14、-2【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【题目详解】解:由题意,得m(m+2)-1=2且m-1≠1,解得m=-2,故答案为-2.【题目点拨】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.15、1【解题分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【题目详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案为1【题目点拨】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.16、【题目详解】解:sin30°+tan45°=【题目点拨】此题主要考察学生对特殊角的三角函数值的记忆30°、45°、60°角的各个三角函数值,必须正确、熟练地进行记忆.17、【分析】先证明△AHE∽△CBA,得到HE与AH的倍数关系,则可知GF与AG的倍数关系,从而求解tan∠GAF的值.【题目详解】∵四边形是正方形,∴,∵∠AHE=∠ABC=90°,∠HAE=∠BCA,
∴△AHE∽△CBA,∴,即,设,则A,
∴,
∴.故答案为:.【题目点拨】本题主要考查相似三角形的判定和性质、正方形、矩形的性质、解直角三角形.利用参数求解是解答本题的关键.18、20m【题目详解】∵CD∥AB,∴△ABE∽△DCE,∴,∵AD=15m,ED=3m,∴AE=AD-ED=12m,又∵CD=5m,∴,∴3AB=60,∴AB=20m.故答案为20m.三、解答题(共78分)19、(1)见解析;(2)1【分析】(1)根据矩形ABCD的性质得出DC∥BF,又由DF∥AC即可得出四边形ACDF是平行四边形;(2)根据(1)中的证明可得AC=DF,AE=ED,利用勾股定理解出BC,从而得出AE,再代入三角形面积公式求出即可.【题目详解】(1)证明:∵四边形ABCD是矩形,∴DC∥BF,∵DF∥AC,∴四边形ACDF是平行四边形;(2)解:∵四边形ABCD是矩形,∴CD=AB=1,∠B=90°,由(1)得:四边形ACDF是平行四边形,∴AC=DF=5,AE=ED=AD,∴BC=AD=,∴AE=×4=2,∴S△AEC=AE•CD=×2×1=1.【题目点拨】本题考查平行四边形的判定和性质、三角形面积的计算,关键在于熟练掌握基础知识并灵活运用.20、【分析】用顶点式表达式,把点(1,-2)代入表达式求得a即可.【题目详解】解:用顶点式表达式:y=a(x﹣2)2+1,把点(1,﹣2)代入表达式,解得:a=﹣3,∴函数表达式为:y=﹣3(x﹣2)2+1=﹣3x2+12x﹣1.【题目点拨】考查的是求函数表达式,本题用顶点式表达式较为简便.21、(1);(2)【分析】(1)共有4个补给站,所以小明选择补给站C(球王故里)的概率是;(2)用树状图或列表表示出所有的情况数,从中找出小明和小红恰好选择同一个补给站的情况数,利用概率公式求解即可.【题目详解】解:(1)在这4个补给站中任意选择一个补给站服务,每个补给站被选择的可能性相同,∴小明选择补给站C(球王故里)的概率是;(2)画树状图分析如下:共有16种等可能的结果,小明和小红恰好选择同一个补给站的结果有4种,∴小明和小红恰好选择同一个补给站的概率为=.【题目点拨】本题主要考查树状图或列表法求随机事件的概率,掌握概率公式是解题的关键.22、,.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【题目详解】原式•.当x=tan60°﹣tan45°1时,原式.【题目点拨】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23、(1)详见解析;(2)当时,成立,理由详见解析.【分析】(1)由旋转的性质得:,根据直角三角形斜边中线的性质可得OD=CF,OE=CF,进而可得OD=OE;(2)连接CE、DF,根据等腰三角形的性质可得,利用角的和差关系可得,利用SAS可证明△ACE≌△AFD,可得CE=DF,∠ECA=∠DFA,利用角的和差关系可得,利用SAS可证明△EOC≌△DOF,即可证明OD=OE,可得(1)结论成立.【题目详解】(1)∵四边形ABCD是正方形,AC为对角线,∴∠BAC=45°,∵将绕点逆时针旋转得,=45°,∴点E在AC上,∴,为的中点,∴同理:∴.(2)当时,成立,理由如下:连接,如图所示:∵在正方形中,,AB=AE,∴,∵为的中点,∴,∵,∴,∵=45°,∴,∴,在和中,,∴,∴,∵,∴,∴,在和中,,∴,∴.【题目点拨】本题考查正方形的性质、旋转的性质及全等三角形的判定与性质,正确得出对应边和对应角,熟练掌握全等三角形的判定定理是解题关键.24、变短了2.8米.【解题分析】试题分析:试题解析:根据AC∥BD∥OP,得出△MAC∽△MOP,△NBD∽△NOP,再利用相似三角形的性质进行求解,即可得出答案.试题解析:如图:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP,∴,即,解得,MA=4米;同理,由△NBD∽△NOP,可求得NB=1.2米,则马晓明的身影变短了4−1.2=2.8米.∴变短了,短了2.8米.25、(1)x=2.5或x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年国际传统医药国际城市渔业航空合同
- 2026年废疫病疫情波污染易发区保护保险合同中
- 2025年普陀区第二人民医院招聘财务收费岗位合同制员工1名备考题库及参考答案详解一套
- 2025年广州越秀区文联招聘合同制辅助人员备考题库及一套参考答案详解
- 嘉善县招聘协管员面试题及答案
- 劳保协管员面试题及答案解析(2025版)
- 2025国家公务员国家税务总局富顺县税务局面试试题及答案
- 2025年东光辅警招聘真题及答案
- 定西市陇西县招聘城镇公益性岗位工作人员考试真题2024
- 2025 九年级语文下册戏剧人物性格特点分析课件
- 2026年安全员之A证考试题库500道附完整答案(夺冠)
- 水里捞东西协议书
- 转让荒山山林协议书
- 销售人员心理素质培训大纲
- 2025四川省国家工作人员学法用法考试复习重点试题(含答案)
- 2025山西大地环境投资控股有限公司招聘116人考试笔试参考题库及答案解析
- 2025国家统计局齐齐哈尔调查队招聘公益性岗位5人考试笔试参考题库及答案解析
- 2025年小学音乐湘艺版四年级上册国测模拟试卷及答案(三套)
- 人工湿地水质净化施工组织设计
- GB/T 21709.22-2013针灸技术操作规范第22部分:刮痧
- GB/T 13245-1991含碳耐火材料化学分析方法燃烧重量法测定总碳量
评论
0/150
提交评论