版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Filters
Introduction
Linearfiltersformaclassofsystemwhichisofcrucialimportanceinsignalprocessing.Althoughinitsmostgeneralsensetheterm‘filter’impliesanyfrequencyselectivedeviceorprocessor,inpracticeitisgenerallyreservedforasystemwhichtransmitsacertainrangeoffrequencies,andrejectsother:suchfrequencyrangesarecalled‘passbands’and‘stopbands’respectively.Weshallseelaterthattheidealfilter,whichwouldintroducenoattenuationofinputsignalsfallingwithinthepassband,andinfiniteaattenuationofsignalsinthestopband,isnotaattainableinpractice.
Historically,boththetheoryandpracticalapplicationoffiltershavebeenverymuchtiedupwithelectroniccommunications.Forexample,aradioreceiverisrequiredtodiscriminateinfavourofjustoneofthemanyincomingsignalspickedupbyitsaerial;thisitdoesonthebasisoftheirdifferentfrequencybands,byuseofahighlyselectivefilter.Suchafilterprocessescontinuoussignalsandisthereforeanexampleofwhatwehavepreviouslycalleda‘continuous’linearsystem;itisalsowidelyreferredtoasan‘analogue’filter.Analoguefiltersareinvariablyconstructedfromlinearelectricalcircuitcomponents,andtheirdetaileddesignfallsoutsidefromlinearelectricalcircuitcomponents,andtheirdetaileddesignfallsoutsidethescopeofthisbook;ontheotherhandweareinapositiontodiscusstheoverallperformanceofcertainwell-knowntypesofanaloguefilter,andthisisdoneinsection7.3.
Althoughaknowledgeofelectricalnetworktheoryisneededforthedesignofanaloguefilters,thesameisfortunatelynottrueoffiltersforsampled-datasignals.Sampled-datafilters,generallyknownas‘digital’filters,mayberealizedbysuitableprogrammingofadigitalcomputerwhichisfedwithasampledversionoftheinputsignal.Theincreasinginterestindigitalfiltersislargelyareflectionoftheavailabilityofthedigitalcomputerasaresearchtoolinallbranchesofscienceandtechnology.Theworkwehavedoneonthez-transforminchapter4andonlinearsystemsinlesson5formsanadequatebackgroundforthedesignandimplementationofdigitalfilters.Howeverbeforegettinginvolvedindetail,wefirstinvestigatesomegeneralaspectsoffilterperformanceintimeandfrequencydomains.
Generalaspectsoffilterperformance
Filtercategories
Apartfromthedivisionoflinearfiltersintothetwobroadcategoriesofanalogueanddigitalfilters,theymaybefurtherclassifiedaccordingtothefrequencyrangeswhichtheytransmitorreject.A‘low-pass’filterhasapassbandinthelow-frequencyregion,whereasa‘high-pass’filtertransmitsonlyhigh-frequencyinputsignals;‘band-pass’and‘band-stop’filtersaredefinedbytheirabilitytodiscriminateinfavourof,oragainst,particularfrequencybands.Theactualfrequencyatwhichthetransitionfrompassbandtostopbandoccursvariesfromcasetocase,andisclearlyanimportantparameteroffilterdesign.
Sincethefrequencyresponseofalinearsampled-datasystemisalwaysaperiodicfunctionof,
itfollowsthatthetermslow-pass,high-pass,band-passandband-stophavetobeinterpretedslightlydifferentlyinthecaseofdigitalfilters.Wehavealreadynotedinsection7.2.1thatsamplingwithan
intervalofTsecondsallowsfaithfulrepresentationofacontinuoussignalhavingfrequencycomponentsuptoTradians/second.Adigitalfilteristhereforeclassifiedaccordingtoits
effectonfrequencycomponentsintherangeTT,whichisthemaximumrangeoccupiedbyanyadequately-sampledinputsignal.
7.2.2.Responseintimeandfrequencydomains
Likeanyotherlinearsystem,afrequency-selectivefiltermaybedescribedeitherbyitsfrequencyresponse,orbyitsimpulseresponse.Thefrequencyresponsedescriptionistheoneformallyused,becauseafilterisgenerallyspecifiedintermsofitsabilitytodiscriminateagainstcertainfrequencyrangesandinfavourofothers;butanyformoffrequencyresponseimpliesaparticularshapeofimpulseresponse,andthelattergivessomeimportantcluestofilterperformance.
Asarule,themorelimitedthebandoffrequenciestransmittedbyafilter,themoreextendedintimeisitsimpulseresponsewaveform:thisisjustareflectionofthegeneralantithesisbetweenfrequency-limitationandtime-limitation,discussedwithreferencetosignalwaveformsinsection
2.3.2.Itmeansthattheoutputfromahighlyselectivefiltermustalwaysbeexpectedtotakealongtimetosettletozeroaftertheinputhasbeenremoved,andthatitsresponsetoasinusoidalinputorsteadylevelwilltakealongtimetoreachits‘steadystate’aftertheinputhasbeenapplied.Thetransienteffectswhichaccompanythesuddenapplicationofaninputsignaltoaselectivefilteraresometimesreferredtoas‘ringing’.SincethefrequencyresponseandimpulseresponseofafilterarerelatedasaFouriertransformpair,theformoftheimpulseresponsemustbeexpectedtoreflectthosefrequencieswhicharestronglytransmittedbythefilter.
Thereasonwhynolinearfiltercandisplaytheidealcharacteristicsoflowpass,bandpass,bandstopandhighpassbecomesclearifitisrecalledthatanylinearsystemhasatransformfunctionexpressibleintermsofasetofpolesandzeros.Aswesawinsection6.2.2,givenasetofs-planepolesandzerositispossibletoinferthesystem’sresponsetoanysinusoidalfrequencybydrawingvectorsfromthevariouspolesandzerostoapointontheimaginaryaxisinthes-plane.Theresponseislargeiftheproductof‘zero-vector’magnitudesislarge,and/ortheproductof‘pole-vector’magnitudesissmall.Aninfinitelyfasttransitionformpassbandtostopbandthereforeimpliesaninfiniterateofchangeofoneorbothoftheseproductsasaparticularpointontheimaginaryaxisiscrossed.Itisintuitivelyclearthatsuchaneffectcannotbeachievedbyanyarrangementofafinitesetofpolesandzeros-althoughitmaybemorecloselyapproximatedwhenalargenumberofpolesandzerosisspecified.However,thenumberofpolesandzerosinatransferfunctionreflectsthecomplexityofthesystem,andcomplexityiscloselyrelatedtocost.
Thepole-zeroapproachmayalsobeusedtodemonstratetherelationshipbetweenthemagnitudeandphaseresponsesofalinearfilter.Letusstartbyconsideringananaloguefilterwhichhasallitspolesandzerosintheleft-handhalfofthes-plane,asinfigure7.1.Thisconfigurationgivesrisetoaparticularmagnitudeandphaseresponse,andthetwowillbeinterdependent.Itisinterestingtoconsiderwhetherthephaseresponsemaynowbeadjustedindependentlyofthemagnituderesponse.Actuallythismaybedoneintwoways,illustratedinpartsofthefigure.Inpartbthezerosofthetransferfunctionaremovedacrosstheimaginaryaxistomirrorimagepositionsintheright-halfs-plane.Thelengthofthezerovectorsdrawntoanypointontheimaginaryaxisisclearlyunalteredbythismove,buttheircontributiontothephaseresponseischanged.Inpartcofthefigure,theoriginalpole-zeropatternisaugmentedby
figure7.1.
additionalpairsofpolesandzerosarrangedsymmetricallywithrespecttotheimaginaryaxis.Theseadditionalpairscausenoalterationtothemagnituderesponseofthefilter,sincevariationsinlengthofoneofthenewzerovectorsareexactlycounterbalancedbythoseofthecorrespondingolevector;ontheotherhand,theirphasecontributionsdonotcancel.Weshouldnotethatphasevariationcannotbeobtainedbyplacingpolesintheright–halfs-plane,becausethiswouldgiverisetoanunstablefilter.Formthisbriefdiscussionwemaydrawseveralconclusions.Firstly,ifzerosaretoberestrictedtotheleft-halfs-plane,magnitudeandphaseresponseareuniquelyrelated,andmaynotbeadjustedindependently:afilterofthistypeisknownasa‘minimum-phase’system.Ifafiltertransferfunctionhaszeros,thesemaybeplacedineithertheleftorright-halfs-plane,givingacorrespondingflexibilityinthephaseresponse,butwithoutalteringthemagnituderesponse.Andfinally,thephaseresponsemaybeadjustedbyaddingmirror-imagepole-zeropairs,althoughthisaddstothefiler’scomplexityandshouldthereforebeavoidedifpossible.Inpractice,adjustmentofthephaseresponseofafilterisoftenaccomplishedbyaseparatesystemknownasan‘all-passnetwork’,whichprovides,
ineffect,justtherequiredmirror-imagepole-zeropairs.Suchaprocessissometimesreferredtoasphase‘equalisation’.However,itisfortunatelytruethatthephaseresponseofafilterisrelativelyunimportantinmayapplications;filterdesignthereforetendstoconcentrateonmagnituderesponse,andthephaseresponseislefttolookafteritself.
Analoguefilters
General
Inprinciple,itispossibletorealizeanydesireds-planepole-zeroconfigurationusinganelectricalnetwork.Howeverthenumberofpolesandzerosusedbearsadirectrelationshiptofiltercomplexity,andhencecost,sothatitisdesirabletoachieveanacceptablefilterperformanceusingasfewpolesandzerosaspossible.Inthissectiononanaloguefilters,wediscussbrieflythepole-zeroconfigurationandfrequencyresponsesofsomecommontypesoffilter,eachofwhichrepresentsausefulcompromisebetweenidealperformanceanddesigneconomy.Ourdiscussionwillbesomewhatbiasedtowardsfiltershavinglow-passcharacteristics;however,itisgenerallypossibletoconvertalow-passfilterintoahigh-pass,bandpass,orbandstoponewithsimilarpassbandandstopbandperformance,bymodificationstotheelectricalcircuitcomponents.Themathematicaltechniquesinvolvedinsuchconversionsfallundertheheadingof‘frequencytransformations’,andarepartofthestock-in-tradeoftheanaloguefilterdesigner.
Whatmightbetermed‘conventional’analoguefiltersarecomposedofpassivelinearelectricalelements-resistors,inductors,andcapacitors.Inthedesignofsuchfiltersaccountmustgenerallybetakenoftheelectricalimpedanceofthedevicestowhichthefilteristobeconnected;inotherwordstheperformanceofthefilterisgenerallyaffectedbytheelectricalcharacteristicsofthesignalsourceconnectedtoitsinputside,andofthe‘load’connectedtoitsoutput.Dueattentionmustbepaidtothisquestion,becauseincorrectterminationofananaloguefiltermayleadtoseriousdiscrepanciesbetweenitsadvertisedandactualfrequencyresponses.In
morerecentyears,‘active’filtershavebecomeincreasinglypopular.Anactivefilterincorporatesoneormoreactivedevicessuchasamplifiers—whichneedapowersupply,anditsmainadvantagesoverthemoreconventionalpassivefilteraretwofold:theuseofactivedevicesallowsinductorstobeeliminatedfromthenetwork,andinductorstendtobebulky,expensive,anddifficulttorealizesinidealform,particularlywhenthefilteristoworkatlowfrequencies;furthermore,itisarelativelysimplemattertodesignanactivefilterwhichisnotsensitivetothepreciseelectricalcharacteristicsofthesignalsourceandloadtowhichitisconnected.
Somecommonfiltertypes
figure7.2.
Filterscomposedentirelyofinductorsandcapacitors,sometimesreferredtoas‘reactive’filter,havetransferfunctionpolesandzeroswhicharerestrictedtotheimaginaryaxisinthes-plane.Thetheoryofsuchfiltershasbeenextensivelyinvestigatedeversincetheearlydaysofradio,andtheyhavefoundwidespreadpracticalapplication.Thepole-zeroconfigurationandfrequencyresponsecharacteristicofatypicalbandpassfilterofthistypeareshowninfigure7.2.Thesearetheoreticaldiagramsbaseduponidealfiltercomponentsandidealterminations,neitherofwhichmayberealizedinpractice.Theeffectofpracticalcomponentsandterminationsistomovethepolesandzerosslightlyawayfromtheimaginaryaxis:thismeansthatinfinitepeaksandnullssuchasthoseshownintheresponsemagnitudecharacteristicoffigure7.2willnotbeobservedinpractice;andthesuddenjumpsshowninthephasecharacteristicwillbesomewhatsmoothedout.Apartfromthedifficultyofdesignatingreactivefilterstoaccountfornonidealelectricalcomponentsandtermination,theirmaindisadvantageisthattheirperformancegenerallydepartsconsiderablyfromtheidealcharacteristics.
Figure7.2Characteristicsofareactivebandpassfilter
Filterscomposedofresistorsandcapacitorsonly(orresistorsandinductorsonly)havetheirpolesconfinedtothenegativerealaxisinthes-plane.Thisrestrictionmeansthatitisdifficulttoachievehighlyselectivebandpassorbandstopcharacteristics,althoughresistor-capacitorfiltersarewildlyusedforrelativelysimplefilteringtasks.Althoughzerosmaybeplacedanywhereinthes-plane,acommonsubclassofsuchfilters(knownasresistor-capacitor‘addernetworks’)haszeros,likepoles,confinedtotherealaxis.Itisworthinvestigatingthelow-passandhigh-passcharacteristicsalittlemorecarefully,inordertoexplainthecommonuseoftheterms‘integrator’and‘differentiator’todescribethem.Anideal‘integrator’wouldproduceanoutputsignalproportionaltothetime-integraloftheinput,andcontinuallyupdateitastimeproceeded:theoutputofanidealdifferentiatorwouldbeproportionalateveryinstanttotherateofchangeoftheinputsignal.Wehavealreadyshowninsection3.4.4thatdifferentiationofatimefunctionisequivalenttomultiplyingitsLaplacetransformbys.Similarly,integrationofatimefunctionisequivalenttodividingtheLaplacetransformbys.Hencewemaywritethetransferfunctionofanidealintegratoranddifferentiatoras
H1s1s,foranintegratorand
H2ss,forandifferentiator
Theuseofallthreetypesoflinearelectriccircuitelement-resistors,capacitorsandinductors-enableszerostobeplacedanywhereinthes-plane,andpolestobeplacedanywheretotheleftoftheimaginaryaxis:thisallowsamuchmoreflexibleapproachtowardsfilterdesign.Asalreadynoted,theuseofactivedevicesinafilterobviatestheneedforinductors,sothatfiltersofthismore
generaltypeareincreasinglyrealizedusingresistors,capacitorsandactiveelements.Themodernapproachtowardsanaloguefilterdesigninvolvesspecifyingthes-planelocationsofagivennumbersofpolesandzerossoastoapproximateadesiredfrequencyresponsemagnitude(orphase)characteristicascloselyaspossible.Insuchdesignitisnormaltotakeaccountoftheactualelectricalpropertiesofthedevicestowhichthefilterisconnected.
DigitalFilter
General
Adigitalfiltermayberealizedineither‘hardware’or‘software’form.Inthefirst,asuitablesetofdigital(logic)electroniccircuitsisinterconnectedtoprovidetheessentialbuildingblocksofadigitalfilteringoperation–storage,delay,addition/subtraction,andmultiplicationbyconstants.Recentdevelopmentsinelectronicsallowacompletedigitalfiltertobeconstructedinintegratedcircuitform.Amajoradvantageofusingsuchspecial-purposehardware,dedicatedtoaparticularsignalprocessingtask,isspeed-particularifsomeofthenecessaryoperationsareperformedinparallel.Ontheotherhand,large-scaleintegratedcircuitsareverycostlyunlessproducedinhighvolume.Thealternative,‘software’,approachistoprogramageneral-purposedigitalcomputerasadigitalfilter.Sincesuchcomputersaregeneralserialmachines,whichcanonlycarryoutasetofprogrammedinstructionsoneatatime,operatingspeedsaremuchslower.However,powerfulmicrocomputersarenowsocheapandwidelyavailablethatwemustexpect‘software’digitalfilterstobecomeincreasinglycommonforreal-timeapplicationsrequiringsamplingratesupto(say)10kHz;andthisapproximateupperlimitmaybeexpectedtoincreaseascomputerhardwareisfurtherdeveloped.Itmustalsoberememberedthatsignals,recordsanddatamaybestoredandsubsequentlyprocessed‘off-line’.Insuchcases,adigitalfilter’soperatingspeedisoftennotamajorconsideration.
Beforediscussingdigitalfiltersinanydetail,itshouldbeemphasizedthattherearetworatherdistinctwaysinwhichasampled-datasignalmaybefiltered.ThefirstinvolvestakingtheDiscreteFourierTransform(DFT)ofthesignal,probablybyuseoftheFastFourierTransform(FFT)algorithm.BoththeDFTandtheFFThavebeencoveredinourdiscussionofsampled-datasignalsinlesson5.Havingfoundthesignalspectrum,themagnitudesandphasesofitsvariousfrequencycomponentsmaythenbeadjustedinaccordancewiththedesiredfiltercharacteristics,andthefilteredtime-domainsignalevaluatedbyinversetransformation–againusingtheFFT.Inthisfirstmethod,thefilteringmaybeconsideredtotakeplaceinthefrequencydomain.Itisanimportantandwidelyusedapproach,whichallowsgreatflexibilityinthechoiceoffiltercharacteristics.Sincethesignalspectrumissimplymultipliedbythedesiredfiltercharacteristic,itoftenprovesfasterthantheequivalenttime-domainconvolution.Ontheotherhand,itsflexibilityisnotneededformanypracticalfilteringtasks,andtime-domainfiltering,asdiscussedbelow,isoftenpreferable.Although
theprincipleoftheFFThasbeencoveredinsection3.3.2.,itsdetailedimplementationisratherspecializedmatter,includedinvariousothertexts.Weshallthereforenotdiscussitfurtherhere.However,itisworthnotingthatmanygeneralpurposecomputersincludeFFTprogrammersaspartoftheirstandardsoftware,andthatspecialpurposeFFThardwareisnowcommerciallyavailable.
Thesecondmethodofimplementingadigitalfilter,whichweshallbeconsideringinsomedetailinthissection,istoworkentirelyinthetime-domain.Ineffect,thisisdonebyconvolutionoftheinputsignalwiththeimpulseresponseoftheappropriatefilter.Whetheratime-domainorafrequency-domainfilterismoreappropriatedependsuponanumberoffactorssuchasthestorageavailableinthecomputer,thedurationofsignal,theoperatingspeed,andwhetherornota‘real-time’operationisrequired.Insuchanoperation,anewoutputsamplevalueiscalculatedeverytimeaninputsampleisgenerated.Thisimpliesdigitalfilteringinthetime-domain,becauseefficientuseoftheFFTrequiresthestorageandprocessingofdatainsubstantialblocks.
ApowerfulwayofchoosingasuitabletransferfunctionHzforaparticularfilteringtaskisto
specifyasetofz-planepolesandzeros.Wesawinsection3.4.2howasampled-datasignalcouldberepresentedbysuchpolesandzeros,andhowitsfrequencyspectrumcouldbeinferredbyconsideringthechangesinlengthsandphaseofvectorsdrawnformthevariouspolesandzerostopointsontheunitcircle.Whenweturnourattentiontodigitalfiltersthesamegeneralconceptsapply,exceptthatwearenowconcernedwithfrequencyresponsesratherthanfrequencyspectra.
Filterswithfiniteimpulseresponses(FIRs)
Introduction
Thefilterhasmdelaystages,(m+1)positiveornegativemultipliers,andanadderorsummingjunction,isoftenreferredtoasadigitaltransversalfilter.Itisnon-recursive,withatime-domainrecurrenceformulagivenby:
m
yna0xna1xn1 amxnmaixni
i0
(7-1)
Ifweconsiderasingle,unit-valued,inputsampletothisfilter,itwillclearlygenerateasequenceofsamplevaluesa0,a1,…,amattheoutput.Thereforethefilter’simpulseresponseisjustmadeupofthemultipliercoefficientsequencea0toam,andisfiniteinduration.Theartofdesigning
suchafilteristospecifytheminimumnumberofdelayandmultiplierelementstoachieveanacceptableperformance.Thefirstofthelow-passfiltersdiscussedinpriorsectionisofthistype,butwithonlytowunitmultipliers;theseprovideaveryelementarylow-passfunction.MostusefulFIR
filtersrequirebetween(say)15and150multipliers,andhaveanequivalentnumberofzeros(butnopoles)intheirtransferfunctions.Theirdesigncanhardlythereforebebaseduponasuitablechoiceofz-planezeroconfiguration,andothermethodsmustbeused.Althoughnon-recursiveFIRfiltersusuallyrequiremanymoredelayandmultiplierelementsthanrecursivefiltersofcomparableperformance,theyhavetwomajorcompensatingadvantages:
Animpulseresponsewhichisfiniteindurationcanalsobesymmetricalinform.Thisproducesa
purelinear-phasecharacteristic.Thereis,inotherwords,nophasedistortion.FIRfiltersdonothavetobelinear-phase,butmostpracticaldesignstakeadvantageofthispossibility,whichisnotavailableinanaloguefiltersbaseduponlumpedcircuitelementssuchasresistors,capacitors,andinductors.
Non-recursivedesignsareinherentlystable,sincetheydonotinvolvefeedbackfromoutputtoinput.Thereisnoriskthatinaccuratespecificationofoneormoreofthemultipliersmightleadtoinstability.
Themoving-averagefilter
Westartbyconsideringasimpleformofdigitaltransversalfilterinwhichallthemultipliersareequal.Thisisoftencalledamoving-averagefilter.Suppose,forexample,weuse19delayelementsand20multipliersallequalto1/20or0.05.Convolutionofthisresponsewithaninputsignalyieldsoutputsamplevalues,eachofwhichistheaverageof20consecutiveinputs.Atypicalcaseisthatthe
inputsequenceisassumedtohaveitsfirstnon-zerovalueatt0,anddisplaysasteadydownward
trendtogetherwithsuperimposedrandomhigh-frequencyfluctuations.Thesefluctuationsmightrepresentobservationormeasurementerrors.Thefilter’soutputhasastart-uptransientbetweent0andt19T,whichcorrespondstothedurationofitsimpulseresponse;thenafterit
transmitstheslowtrendoftheinputbutgreatlyreducestherapidfluctuations.Thissmoothing,or
averaging,actionisequivalenttolow-passfiltering.
Thepuredelayimposedbyaliner-phasefiltermaybeshowntoequalhalfthedurationofitssymmetricalimpulseresponse;inthiscase,thedelayis9.5T.Iftheoutputwaveformisadvancedintimebythisamount,itisseentofollowtheslowtrendoftheinputveryclosely,withagainofaboutunity.Thefilter’slow-frequencygainofunityisconfirmedbyitsfrequency-responsemagnitudecharacteristic.Asexpected,thisisbroadlyofthelow-passtype,althoughthepresenceofsubstantialsidelobesmakesitrathernon-ideal.Nevertheless,moving-averagefiltersarewidelyusedforundemandinglow-passfilteringtasks.Notethat,sinceallmultipliercoefficientsareequal,asinglemultiplierattheoutputoftheadderwouldhavethesameeffectasthemanyindividualonesontheinputside.Alternatively,forevengreatersimplicity,themultipliersmaybeomittedaltogether.Thismerelyalterstheoutputbyascalefactor,butdoesnototherwiseaffectfilterperformance.Inthisexample,wehaveillustratedamoving-averagedesignwith20multipliers,ortappingpoints,givinga
frequencyresponsewithitsfirsttransmissionnullat1/20THz.Anyothernumberofmultipliersmay,
ofcourse,bespecified:thegreaterthenumber,themorepronouncedthelow-passfilteringaction,andthemorecloselythefrequency-responsemagnitudecharacteristicapproximatesaform,inrange
TT.
Filterswithinfiniteimpulseresponse(IIRs)
Anydigitalfilterspecifiedintermsofoneormorez-planepoleshasaninfiniteimpulseresponse(IIR).Actually,thisstatementshouldbeslightlyqualifiedbysayinguncancelledpoles,because,aswehaveseenintheprevioussection,certaintypesofFIRfilterhavez-planepoleswhicharecanceledbycoincidentzeros.TheIIRofanyrealizablefiltercannotbesymmetricalinform,becauseitcannotstartbeforet=0.Unfortunately,therefore,noIIRfiltercandisplaypurelinear-phasecharacteristics.ThemajoradvantageofIIRdesignsisthatthepositioningofjustoneorafewpolesinside,butcloseto,theunitcircleallowsustoachieveveryselectivefilterpassbandcharacteristics.Asimpleexamplehasalreadybeengiveninsection7.4.2:alow-passfilterbaseduponasinglez-planepole.Iftheparameterismadeclosetounity,thepassbandbecomesverynarrow.Comparableselectivitycouldonlybeachievedusingalargenumberofz-planezeros.
SinceIIRfiltersemployuncancelledz-planepoles,theyarerecursive;indeed,notinfiniteimpulseresponsecouldbeimplementedinapurelynon-recursiveoperation.Since,inmostpracticalcases,onlyafewpolesareneededtoachieveacceptableperformance,therecurrenceformulaeofIIRfiltersnormallyinvolverelativelyfewterms;thiscontrastswithFIRtransversalfilterswhereupto100or150termsmaybeneeded.However,therecursivemultipliersofanIIRdesignaregenerallydecimalnumbers,needingspecificationwithconsiderableaccuracyiftherequiredfrequencyresponseistobeachieved,andinstabilityavoided.TherearethereforebothadvantagesanddisadvantagesinIIR,asopposedtoFIR,designs.
ManypracticalIIRfiltersarebaseduponanalogueequivalents.Thereasonforthisislargelyhistorical:anextensivetheoryofanaloguefiltershasgrownupoverthelasthalf-century,anditwasnaturalthat,inthemuchmorerecentdevelopmentofdigitalfilters,equivalentdesignsshouldbesought.Sinceanaloguefiltersbaseduponlumpedcircuitelementshaveinfiniteimpulseresponses,thisapproachleadsnaturallytodigitalfiltersoftheIIRtype.Essentially,theproblemistofindsuitabletransformationsformappingthes-planepolesandzerosofananaloguefilterintothez-plane.Valuablethoughthisapproachisforderivingdigitalfilterswith,forexample,ButterworthorChebychevcharacteristics,itmustberememberedthatsomeoftheconstraintsofanaloguefilterdesigndonotapplytothedigitalcase.Forexample,thelinear-phaseFIRdesignsdiscussedintheprevioussectiondonothavedirectlumped-elementanalogueequivalents.Inaddition,itisquitepossibletochooseasuitablez-planepole-zeroconfigurationforafilter,withoutdirectreferencetoanaloguedesigns.
Furtheraspectsoffilterimplement
Thepracticalimplementationofadigitalfilterisoftenaffectedbytheproblemoffinite‘wordlength’.Becauseanumericalvaluemustberepresentedintermsofafinitenumberofbinarydigits,orbits,itisalwayssubjecttosomeinaccuracy.T
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电视屏幕保养合同
- 2026年汽车行业用户需求合同
- 验资报告服务合同2026年保密义务
- 2026年食品质量保证合同协议
- 细胞与基因治疗革命
- 家用厨房用火用电安全培训课件
- 《信息技术基础(上册)》课件 模块二课题四
- 家政法律培训法课件
- 建筑施工企业安全员年终总结
- 培训讲师演讲课件
- 航天禁(限)用工艺目录(2021版)-发文稿(公开)
- TCALC 003-2023 手术室患者人文关怀管理规范
- 关键对话-如何高效能沟通
- 村级组织工作制度
- 汽车吊、随车吊起重吊装施工方案
- 中外政治思想史练习题及答案
- 人教版九年级化学导学案全册
- 降低阴式分娩产后出血发生率-PDCA
- 国开电大商业银行经营管理形考作业3参考答案
- GB/T 5211.6-2020颜料和体质颜料通用试验方法第6部分:水悬浮液pH值的测定
- GB/T 36024-2018金属材料薄板和薄带十字形试样双向拉伸试验方法
评论
0/150
提交评论