人教版初一数学知识点下册总结中学教育初中教育_第1页
人教版初一数学知识点下册总结中学教育初中教育_第2页
人教版初一数学知识点下册总结中学教育初中教育_第3页
人教版初一数学知识点下册总结中学教育初中教育_第4页
人教版初一数学知识点下册总结中学教育初中教育_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同方差;(2)完全平方公式:①(a+b)2=a2+2ab+b2乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同方差;(2)完全平方公式:①(a+b)2=a2+2ab+b2∥EF又∵CD∥EF∴AB∥CD10.平行线判定定理:两条直∠BOC=∠DOB-∠BOC即∠AOB=∠DOC(3)∵OC初一数学(下)应知应会的知识点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的4.二元一次方程组的解法:;((3)注意:判断如何解简单是关键.(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方达式举例:几何表达式举例:∵a=cb=d∵a=c+d又∵c=向性,定理没有.2.直线不能延长;射线不能正向延长,但能反向达式举例:几何表达式举例:∵a=cb=d∵a=c+d又∵c=向性,定理没有.2.直线不能延长;射线不能正向延长,但能反向公式:(1)a0=1(a≠0);a-n=1,(a≠0).注意一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个0不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一a b00a=0或b=0;amam7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个解集,再利用数轴确定这个不等式组的解集.8.一元一次不等式组的解集的四种类型:设a>b不等式组的解集是xa>a>不等式组解集是空集>>b∠BOC=∠DOB-∠∠BOC=∠DOB-∠BOC即∠AOB=∠DOC(3)∵OCC=1AB,EG=1EF22又∵AB=EF∴AC=EG几何表FD(2)∵AB∥CD∴EF=∠DFE(3)∵AB∥CD∴Ea+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加9.几个重要的判断:整式的乘除0x、y是正数,0x、y是负数,于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.再把所得的积相加.式的每一项,再把所得的积相加.p 22乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式∴∠1=∠27.对顶角性质定理:AD乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式∴∠1=∠27.对顶角性质定理:AD几何表达式举例:O对顶角向性,定理没有.2.直线不能延长;射线不能正向延长,但能反向1x29.零指数与负指数公式:an10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式·商式.13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)一条射线把一个角分成两个相等的部O2.线段中点的定义:点C把线段AB分成两条相等的几何表达式举例:∴OC=∠BOCB几何表达式举例:∴AC=BCAC公式:(1)公式:(1)a0=1(a≠0);a-n=1,(a≠0).注意db=c+d∴a=b∴a=b几何表达式举例:∵∠1+∠3=1∠BOC=∠DOB-∠BOC即∠AOB=∠DOC(3)∵OC)∵EF=∠DFE∴AB∥CD(3)∵EF+∠DFE=1804.等量代换:ACBA∴AC+CD=DB+CD即AD=BCBAOCDABCBFD(2)EMG(3)∴OC-∠BOC=∠DOB-∠BOC即∠AOB=∠DOC又∵OB=2∠BOCACBEGF(4)∠EFG=2∠GFM∴OB=∠EFG5.补角重要性质:又∵AB=EF∴AC=EG角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角主要用于填空和选择题)一基本概念:.z.-直线、射线、线段、a+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角主要用于填空和选择题)一基本概念:.z.-直线、射线、线段、a+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行4B1236.余角重要性质:1327.对顶角性质定理:ADOC∵OC=∠DOB8.两条直线垂直的定义:两条直线相交成四个角,有一个角是直CAOD∴OB=90°B∴AB、CD互相垂直9.三直线平行定理:DB∴AC+CD=DB+CD即DB∴AC+CD=DB+CD即AD=BCBC(2)∵OC=∠b=0;amam7.一元一次不等式组的解集与解法:所有这些一解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集80°.z.12∠2+∠4=180°3又∵=∠4∴∠1=∠2ACEBDF又∵CD∥EF两条直线被第三条直线所截:(2)两条平行线被第三条直线所截,内错角(3)两条平行线被第三条直线所截,同旁内ACACGEFHGEFHBDBD∴AB∥CD∴AB∥CD∴AB∥CD∴EB=∠EFD∴EF+∠DFE=180°几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)垂直.(如图)CAOD垂直.(如图)CAOD几何表达式举例:(1)∵AB、CD互相垂直∴OB=90°B(2)∵OB=90°∴AB、CD互相垂直一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个)(2)若内错角相等,两条直线平行;(如图)(3)若同旁内角直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位公理、定理、推论、证明.1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.1.定义有双向性,定理没有.2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.3.命题可以写为“如果………则………”的形式,“如果………”是命题的条件,“则………”是命题的结论.4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论