2024届海东市重点中学九年级数学第一学期期末达标测试试题含解析_第1页
2024届海东市重点中学九年级数学第一学期期末达标测试试题含解析_第2页
2024届海东市重点中学九年级数学第一学期期末达标测试试题含解析_第3页
2024届海东市重点中学九年级数学第一学期期末达标测试试题含解析_第4页
2024届海东市重点中学九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海东市重点中学九年级数学第一学期期末达标测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为()A.y=﹣1 B.y=﹣3 C.y=﹣2 D.y=﹣22.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A.甲比乙的产量稳定 B.乙比甲的产量稳定C.甲、乙的产量一样稳定 D.无法确定哪一品种的产量更稳定3.在一个万人的小镇,随机调查了人,其中人看某电视台的早间新闻,在该镇随便问一个人,他看该电视台早间新闻的概率大约是()A. B. C. D.4.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5075.如图,四边形ABCD是⊙O的内接四边形,点E在边CD的延长线上,若∠ABC=110°,则∠ADE的度数为()A.55° B.70° C.90° D.110°6.平移抛物线y=﹣(x﹣1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位 B.向上平移3个单位C.向右平移3个单位 D.向下平移3个单位7.把二次函数化为的形式是A. B.C. D.8.若,则的值为()A. B. C. D.9.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=57010.如图,矩形是由三个全等矩形拼成的,与、、、、分别交于点、、、、,设,,的面积依次为、、,若,则的值为()

A.6 B.8 C.10 D.1二、填空题(每小题3分,共24分)11.己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.12.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程____________13.时钟的时针不停地旋转,从上午时到上午时,时针旋转的旋转角是__________度.14.如图,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,则△ABD与△ADC的面积比为________.15.如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=______.16.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.17.已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线_____.18.抛物线y=x2+2x+3的顶点坐标是_____________.三、解答题(共66分)19.(10分)如图,在每个小正方形的边长均为的方格纸中,有线段和线段,点、、、均在小正方形的顶点上.(1)在方格纸中画出以为一边的锐角等腰三角形,点在小正方形的顶点上,且的面积为;(2)在方格纸中画出以为一边的直角三角形,点在小正方形的顶点上,且的面积为5;(3)连接,请直接写出线段的长.20.(6分)网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率;(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?21.(6分)已知:在△ABC中,点D、点E分别在边AB、AC上,且DE//BC,BE平分∠ABC.(1)求证:BD=DE;(2)若AB=10,AD=4,求BC的长.22.(8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?23.(8分)关于的一元二次方程.(1)求证:此方程必有两个不相等的实数根;(2)若方程有一根为1,求方程的另一根及的值.24.(8分)定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是.(2)设的解集在坐标系内所对应的点形成的图形为G.①求G的面积;②P(x,y)为G内(含边界)的一点,求3x+2y的取值范围;(3)设的解集围成的图形为M,直接写出抛物线y=x2+2mx+3m2﹣m﹣1与图形M有交点时m的取值范围.25.(10分)解方程(1)(用配方法)(2)(3)计算:26.(10分)中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据“上加下减,左加右减”的原则进行解答即可.【题目详解】解:将抛物线y=x2﹣2向上平移1个单位后所得新抛物线的表达式为y=x2﹣2+1,即y=x2﹣1.故选:A.【题目点拨】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.2、A【解题分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.【题目详解】因为s=0.002<s=0.03,所以,甲比乙的产量稳定.故选A【题目点拨】本题考核知识点:方差.解题关键点:理解方差意义.3、D【解题分析】根据等可能事件的概率公式,即可求解.【题目详解】÷=,答:他看该电视台早间新闻的概率大约是.故选D.【题目点拨】本题主要考查等可能事件的概率公式,掌握概率公式,是解题的关键.4、B【分析】根据年利润平均增长率,列出变化增长前后的关系方程式进行求解.【题目详解】设这两年的年利润平均增长率为x,列方程为:300(1+x)2=507.故选B.【题目点拨】本题考查了由实际问题抽象出一元二次方程,解题的关键是怎么利用年利润平均增长率列式计算.5、D【解题分析】∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠ADE=180°,∴∠ADE=∠ABC=110°.故选D.点睛:本题是一道考查圆内接四边形性质的题,解题的关键是知道圆内接四边形的性质:“圆内接四边形对角互补”.6、B【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【题目详解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y=-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【题目点拨】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.7、B【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【题目详解】原式=(x2+4x−4)=(x2+4x+4−8)=(x+2)2−2故选:B.【题目点拨】此题考查了二次函数一般式与顶点式的转换,解答此类问题时只要把函数式直接配方即可求解.8、A【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【题目详解】由,得4b=a−b.,解得a=5b,故选:A.【题目点拨】本题考查了比例的性质,利用比例的性质得出b表示a是解题关键.9、A【解题分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.10、B【分析】由已知条件可以得到△BPQ∽△DKM∽△CNH,然后得到△BPQ与△DKM的相似比为,△BPQ与△CNH的相似比为,由相似三角形的性质求出,从而求出.【题目详解】解:∵矩形是由三个全等矩形拼成的,∴AB=BD=CD,AE∥BF∥DG∥CH,∴四边形BEFD、四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE∥DF∥CG,∴∠BPQ=∠DKM=∠CNH,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∴△BPQ∽△DKM∽△CNH,∵,,∴,,∴,,∵,∴,∴;故选:B.【题目点拨】本题考查了相似三角形的判定和性质,矩形的性质以及平行四边形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质,正确得到,,从而求出答案.二、填空题(每小题3分,共24分)11、【解题分析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.12、(30-2x)(20-x)=6×1.【解题分析】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.可列方程(30-2x)(20-x)=6×1.13、【分析】先计算时钟钟面上每两个数字之间的度数,从上午时到上午时共旋转4个格,即可求得答案.【题目详解】钟面上每两个数字间的度数为,∵从上午时到上午时共旋转4个格,∴,故答案为:120.【题目点拨】此题考查钟面的度数计算,确定钟面上每两个数字事件的度数是解题的关键.14、1:1【分析】根据∠BAC=90°,可得∠BAD+∠CAD=90°,再根据垂直的定义得到∠ADB=∠CDA=90°,利用三角形的内角和定理可得∠B+∠BAD=90°,根据同角的余角相等得到∠B=∠CAD,利用两对对应角相等两三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根据相似三角形的面积比等于相似比(对应边的之比)的平方即可求出结果.【题目详解】:∵∠BAC=90°,

∴∠BAD+∠CAD=90°,

又∵AD⊥BC,

∴∠ADB=∠CDA=90°,

∴∠B+∠BAD=90°,

∴∠B=∠CAD,又∠ADB=∠CDA=90°,

∴△ABD∽△CAD,

∴,

∵∠B=60°,

∴,

∴.

故答案为1:1.【题目点拨】本题考查了相似三角形的判定与性质,熟练掌握相似比即为对应边之比,周长比等于相似比,面积之比等于相似比的平方是解决问题的关键.15、50°【解题分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得.【题目详解】解:∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠BAC=∠BOC=×100°=50°.故答案为:50°.【题目点拨】本题考查圆周角定理,题目比较简单.16、2:1.【解题分析】过点O作OE⊥AB于点E,延长EO交CD于点F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【题目详解】如图,过点O作OE⊥AB于点E,延长EO交CD于点F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,故答案为:2:1.【题目点拨】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.17、x=﹣1【分析】根据一元二次方程的两根得出抛物线与x轴的交点,再利用二次函数的对称性可得答案.【题目详解】∵一元二次方程的两根为﹣5和3,∴二次函数图象与x轴的交点为(﹣5,0)和(3,0),由抛物线的对称性知抛物线的对称轴为,故答案为:.【题目点拨】本题主要考查了抛物线与x轴的交点,解题的关键是掌握抛物线与x轴交点坐标与对应一元二次方程间的关系及抛物线的对称性.18、(﹣1,2)【题目详解】解:将二次函数转化成顶点式可得:y=,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【题目点拨】本题考查二次函数的顶点坐标.三、解答题(共66分)19、(1)作图见解析(2)作图见解析(3)【分析】(1)利用等腰三角形的性质得出对应点位置,进而得出答案;(2)直接利用旋转的性质得出对应点位置,进而得出答案.【题目详解】(1)如图所示:△ABC即为所求;(2)如图所示:△DFE,即为所求;(3)CF=.【题目点拨】本题考查了应用设计与作图以及等腰三角形的性质和勾股定理等知识,根据题意得出对应点位置是解题的关键.20、(1)该快递公司投递的快递件数的月平均增长率为8%;(2)按此快递增长速度,不增加人手的情况下,不能完成今年9月份的投递任务,见解析【分析】(1)设该快递公司投递的快递件数的月平均增长率为x,根据“5月份快递件数×(1+增长率)2=7月份快递件数”列出关于x的方程,解之可得答案;(2)分别计算出9月份的快递件数和8名快递小哥可投递的总件数,据此可得答案.【题目详解】(1)设该快递公司投递的快递件数的月平均增长率为x,根据题意,得:,解得:=0.08=8%,=﹣2.08(舍),答:该快递公司投递的快递件数的月平均增长率为8%;(2)9月份的快递件数为(万件),而0.8×8=6.4<6.8,所以按此快递增长速度,不增加人手的情况下,不能完成今年9月份的投递任务.【题目点拨】本题主要了考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.21、(1)见解析;(2)15【分析】(1)利用平行线性质及角平分线线定理得到∠DEB=∠DBE,再利用等腰三角形判定得到BD=DE,即得到答案.(2)利用相似的判定得到△ADE∽△ABC,再利用相似的性质得到,代入值即可得到答案.【题目详解】(1)证明:∵DE//BC,∴∠DEB=∠EBC∵BE平分∠ABC∴∠DBE=∠EBC∴∠DEB=∠DBE∴BD=DE(2)解:∵AB=10,AD=4∴BD=DE=6∵DE//BC∴△ADE∽△ABC∴∴∴BC=15【题目点拨】本题考查平行线性质、等腰三角形的判定以及相似三角形的判定、性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元【解题分析】试题分析:(1)设y=kx+b,再由题目已知条件不难得出解析式;(2)设利润为W,将W用含x的式子表示出来,W为关于x的二次函数,要求最值,将解析式化为顶点式即可求出.试题解析:解:(1)设y=kx+b,根据题意得:,解得:k=-1,b=8,所以,y与x的函数关系式为y=-x+8;(2)设利润为W,则W=(x-4)(-x+8)=-(x-6)2+4,因为a=-1<0,所以当x=6时,W最大为4万元.当销售价格定为6元时,才能使每月的利润最大,每月的最大利润是4万元.点睛:要求最值,一般讲二次函数解析式写成顶点式.23、(1)证明见解析;(2)另一根为4,为.【分析】(1)判断是否大于0即可得出答案;(2)将x=1代入方程求解即可得出答案.【题目详解】解:(1)∵∴∵∴故此方程必有两个不相等的实数根;(2)把代入原方程,∴,即,,∴,故方程的另一根为4,为.【题目点拨】本题考查的是一元二次方程,难度适中,需要熟练掌握一元二次方程根与系数的关系.24、(2):A、B、D;(2)①2;②﹣22≤2x+2y≤2;(2)0≤m≤.【分析】(2)在直角坐标系描出A、B、C、D四点,观察图形即可得出结论(2)①分别画出直线y=2x+2、y=-x-2、y=-2得出图形为G,从而求出G的面积;②根据P(x,y)为G内(含边界)的一点,求出x、y的范围,从而2x+2y的取值范围;(2)分别画出直线y=2x+2、y=2x-2、y=-2x-2、y=-2x+2所围成的图形M,再根据抛物线的对称轴x=﹣m,和抛物线y=x2+2mx+2m2﹣m﹣2与图形M有交点,从而求出m的取值范围【题目详解】解:(2)如图所示:这四个点中是x﹣y﹣2≤0的解的点是A、B、D.故答案为:A、B、D;(2)①如图所示:不等式组在坐标系内形成的图形为G,所以G的面积为:×2×2=2.②根据图象得:﹣2≤x≤2,﹣2≤y≤﹣2,∴﹣6≤2x≤2,﹣6≤2y≤﹣2,∴﹣22≤2x+2y≤2.答:2x+2y的取值范围为﹣22≤2x+2y≤2.(2)如图所示为不等式组的解集围成的图形,设为M,抛物线y=x2+2mx+2m2﹣m﹣2与图形M有交点时m的取值范围:∵抛物线的对称轴x=﹣m,﹣m≥﹣,或﹣m≤,∴m或m≥﹣.又﹣2≤2m2﹣m﹣2≤2,∴0≤m≤,综上:m的取值范围是0≤m≤【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论