版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省长沙市雨花区雅礼教育集团数学九上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.2的相反数是()A. B. C. D.2.在Rt△ABC中,∠C=90°,、、所对的边分别为a、b、c,如果a=3b,那么∠A的余切值为()A. B.3 C. D.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个4.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是A. B.C. D.5.已知二次函数,当时,随增大而增大,当时,随增大而减小,且满足,则当时,的值为()A. B. C. D.6.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cm B.3cm C.4cm D.4cm7.下列事件中是必然事件是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上8.把二次函数化成的形式是下列中的()A. B.C. D.9.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.线段 B.三角形 C.平行四边形 D.正方形10.如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.511.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=55°,则∠BCD的度数为()A.25° B.30° C.35° D.40°12.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是()A.y=x+2 B. C.y=x²+2 D.y=-x²-2二、填空题(每题4分,共24分)13.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________.14.二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)15.二次函数的部分图像如图所示,要使函数值,则自变量的取值范围是_______.16.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是__________.17.已知实数a、b、c在数轴上的位置如图所示,化简=_____.18.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,在一定范围内,每增加1棵,所出售的这批树苗每棵售价降低0.5元,若该校最终向园林公司支付树苗款8800元,设该校共购买了棵树苗,则可列出方程__________.三、解答题(共78分)19.(8分)如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接AD,BD.求四边形ABCD的面积.20.(8分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.21.(8分)如图,已知抛物线.(1)用配方法将化成的形式,并写出其顶点坐标;(2)直接写出该抛物线与轴的交点坐标.22.(10分)问题发现:(1)如图1,内接于半径为4的,若,则_______;问题探究:(2)如图2,四边形内接于半径为6的,若,求四边形的面积最大值;解决问题(3)如图3,一块空地由三条直路(线段、AB、)和一条弧形道路围成,点是道路上的一个地铁站口,已知千米,千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?若存在,求其最大值;若不存在,说明理由.23.(10分)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x的之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大;最大利润是多少.(注:销售利润=销售收入-购进成本)24.(10分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.25.(12分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.26.如图,取△ABC的边AB的中点O,以O为圆心AB为半径作⊙O交BC于点D,过点D作⊙O的切线DE,若DE⊥AC,垂足为点E.(1)求证:△ABC是等腰三角形;(2)若DE=1,∠BAC=120°,则的长为.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据相反数的概念解答即可.【题目详解】2的相反数是-2,
故选D.2、A【分析】根据锐角三角函数的定义,直接得出cotA=,即可得出答案.【题目详解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故选择:A.【题目点拨】此题主要考查了锐角三角函数的定义,熟练地应用锐角三角函数的定义是解决问题的关键.3、C【题目详解】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【题目点拨】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.4、C【解题分析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.5、A【分析】根据,求得m=3或−1,根据当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,从而判断m=-1符合题意,然后把x=0代入解析式求得y的值.【题目详解】解:∵,∴m=3或−1,∵二次函数的对称轴为x=m,且二次函数图象开口向下,又∵当x<−1时,y随x增大而增大,当x>0时,y随x增大而减小,∴−1≤m≤0∴m=-1符合题意,∴二次函数为,当x=0时,y=1.故选:A【题目点拨】本题考查了二次函数的性质,根据题意确定m=-1是解题的关键.6、C【解题分析】利用扇形的弧长公式可得扇形的弧长;根据扇形的弧长=圆锥的底面周长,让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高:∵扇形的弧长=cm,圆锥的底面半径为4π÷2π=2cm,∴这个圆锥形筒的高为cm.故选C.7、C【解题分析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.【题目详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C.8、C【分析】先提取二次项系数,然后再进行配方即可.【题目详解】.故选:C.【题目点拨】考查了将一元二次函数化成y=a(x-h)2+k的形式,解题关键是正确配方.9、B【解题分析】根据长方形放置的不同角度,得到的不同影子,发挥想象能力逐个实验即可.【题目详解】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:B.【题目点拨】本题主要考查几何图形的投影,关键在于根据不同的位置,识别不同的投影图形.10、C【解题分析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.11、C【题目详解】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠BAD=90°﹣55°=35°,∴∠BCD=∠BAD=35°.故选C.【题目点拨】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.12、D【分析】先根据点A、B的坐标可知函数图象关于y轴对称,排除A、B选项;再根据点C的纵坐标大于点A的纵坐标,结合C、D选项,根据y随x的增减变化即可判断.【题目详解】函数图象关于y轴对称,因此A、B选项错误又再看C选项,的图象性质:当时,y随x的增大而减小,因此错误D选项,的图象性质:当时,y随x的增大而增大,正确故选:D.【题目点拨】本题考查了二次函数图象的性质,掌握图象的性质是解题关键.二、填空题(每题4分,共24分)13、.【解题分析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=∴考点:1.相似三角形的判定与性质;2.勾股定理.14、①③.【解题分析】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(,y2)是对称点,∴则y1<y2;故②不正确;③∵=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0,3a+c=0,a=﹣c;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AB=AC=4时,∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;同理当AC=BC时,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无实数解.经解方程组可知有两个b值满足条件.故⑤错误.综上所述,正确的结论是①③.故答案为①③.点睛:本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数的图象与系数的关系:当a<0,抛物线开口向下;抛物线的对称轴为直线x=;抛物线与y轴的交点坐标为(0,c),与x轴的交点为(x1,0)、(x2,0).15、【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【题目详解】根据二次函数的图象可知:对称轴为,已知一个点为,
根据抛物线的对称性,则点关于对称性对称的另一个点为,
所以时,的取值范围是.故答案为:.【题目点拨】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点的对称点是解题的关键.16、【分析】从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,得出组成的两位数总个数及能被3整除的数的个数,求概率.【题目详解】∵从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,共有6种情况,它们分别是56、57、65、67、75、76,其中能被3整除的有57、75两种,∴组成两位数能被3整除的概率为:故答案为:【题目点拨】本题考查的是直接用概率公式求概率问题,找对符合条件的个数和总个数是关键.17、﹣a+b【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【题目详解】解:由图可知:a<b<0<c,而且,
∴a+c<0,b+c<0,
∴,
故答案为:.【题目点拨】本题考查了二次根式的性质与化简,绝对值的性质,根据数轴判断出a、b、c的情况是解题的关键.18、【分析】根据“总售价=每棵的售价×棵数”列方程即可.【题目详解】解:根据题意可得:故答案为:.【题目点拨】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.三、解答题(共78分)19、S四边形ADBC=49(cm2).【分析】根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,根据勾股定理求出AD、BD、AC的值,再根据S四边形ADBC=S△ABD+S△ABC进行计算即可.【题目详解】∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴,∴AD=BD,∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,则AD=BD=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC==6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).【题目点拨】本题考查了圆周角定理、三角形的面积等,正确求出相关的数值是解题的关键.20、(1);(2)【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【题目详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:;故答案为:.(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率)=.【题目点拨】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.21、(1),顶点坐标为;(2),,【分析】(1)利用配方法将二次函数的一般式转化为顶点式,从而求出抛物线的顶点坐标;(2)将y=0代入解析式中即可求出结论.【题目详解】解:(1),顶点坐标为;(2)将y=0代入解析式中,得解得:∴抛物线与轴的交点坐标为,,【题目点拨】此题考查的是求抛物线的顶点坐标和求抛物线与x轴的交点坐标,掌握将二次函数的一般式转化为顶点式和一元二次方程的解法是解决此题的关键.22、(1);(2)四边形ABCD的面积最大值是;(3)存在,其最大值为.【分析】(1)连接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根据OA=4,利用余弦公式求出AH,即可得到AB的长;(2)连接AC,由得出AC=,再根据四边形的面积=,当DH+BM最大时,四边形ABCD的面积最大,得到BD是直径,再将AC、BD的值代入求出四边形面积的最大值即可;(3)先证明△ADM≌△BMC,得到△CDM是等边三角形,求得等边三角形的边长CD,再根据完全平方公式的关系得出PD=PC时PD+PC最大,根据CD、∠DPC求出PD,即可得到四边形周长的最大值.【题目详解】(1)连接OA、OB,作OH⊥AB于H,∵,∴∠AOB=120.∵OH⊥AB,∴∠AOH=∠AOB=,AH=BH=AB,∵OA=4,∴AH=,∴AB=2AH=.故答案为:.(2)∵∠ABC=120,四边形ABCD内接于,∴∠ADC=60,∵的半径为6,∴由(1)得AC=,如图,连接AC,作DH⊥AC,BM⊥AC,∴四边形的面积=,当DH+BM最大时,四边形ABCD的面积最大,连接BD,则BD是的直径,∴BD=2OA=12,BD⊥AC,∴四边形的面积=.∴四边形ABCD的面积最大值是(3)存在;∵千米,千米,,∴△ADM≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180-∠B=120,∴∠AMD+∠BMC=120,∴∠DMC=60,∴△CDM是等边三角形,∴C、D、M三点共圆,∵点P在弧CD上,∴C、D、M、P四点共圆,∴∠DPC=180-∠DMC=120,∵弧的半径为1千米,∠DMC=60,∴CD=,∵,∴,∴,∴当PD=PC时,PD+PC最大,此时点P在弧CD的中点,交DC于H,在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,∴,∴四边形的周长最大值=DM+CM+DP+CP=.【题目点拨】此题是一道综合题,考查圆的性质,垂径定理,三角函数,三角形全等的判定及性质,动点最大值等知识点.(1)中问题发现的结论应用很主要,理解题意在(2)、(3)中应用解题,(3)的PD+PC最大值的确定是难点,注意与所学知识的结合才能更好的解题.23、(1)y=-100x2+600x+5500(0≤x≤11);(2)每件商品销售价是10.5元时,商店每天销售这种小商品的利润最大,最大利润是6400元.【分析】(1)根据等量关系“利润=(13.5-降价-进价)×(500+100×降价)”列出函数关系式;(2)根据(1)中的函数关系式求得利润最大值.【题目详解】解:(1)设降价x元时利润最大.依题意:y=(13.5-x-2.5)(500+100x)=100(-x2+6x+55)=-100x2+600x+5500整理得:y=-100(x-3)2+6400(0≤x≤11);(2)由(1)可知,∵a=-100<0,∴当x=3时y取最大值,最大值是6400,即降价3元时利润最大,∴销售单价为10.5元时,最大利润6400元.答:销售单价为10.5元时利润最大,最大利润为6400元.【题目点拨】本题考查的是函数关系式的求法以及最值的求法.24、(1)70;(2)画树状图见解析,该顾客所获得购物券的金额不低于50元的概率1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工地厨房出租合同范本
- 建筑安全施工合同范本
- 户外帐篷租赁合同范本
- 学校联营协议合同范本
- 广告电子灯箱合同范本
- 天猫商品推广合同范本
- 宠物美容聘用合同范本
- 人教版七年级语文上册童趣同步练习教案
- 人教版三年级下册语文女娲补天教案
- 三年级数学上册第八单元认识几分之几教案
- 2025年大学《电子商务概论》期末试题及答案
- 2025呼和浩特市文化旅游投资集团有限公司招聘工作人员(职能类)20人考试参考题库及答案解析
- 后勤洗刷合同协议
- 2026年海南职业技术学院单招职业技能测试题库及参考答案详解1套
- 浙江省强基联盟2025-2026学年高三上学期二模英语试题(解析版)
- 2026春译林版新版八年级下册英语单词默写表
- 2025内蒙古能源集团智慧运维公司运维人员校园招聘55人笔试参考题库附带答案详解(3卷)
- 2025至2030中国网球行业市场发展分析与发展趋势及投资风险报告
- 袜业生产质量管理工作规范
- 运动员退役协议书
- 安全生产三管三必须培训课件
评论
0/150
提交评论