版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
条件概率为背景的概率模型1.求条件概率的常用方法(1)利用定义,分别求P(A)和P(AB),得P(B|A)=eq\f(P(AB),P(A)).(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再在事件A发生的条件下求事件B包含的基本事件数,即n(AB),得P(B|A)=eq\f(n(AB),n(A)).2.利用全概率公式的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件Ai(i=1,2,…,n);(2)求P(Ai)和所求事件B在各个互斥事件Ai发生条件下的概率P(Ai)P(B|Ai);(3)代入全概率公式计算.【典例1】(2023·菏泽高三模拟)设某批产品中,甲、乙、丙三厂生产的产品分别占45%,35%,20%,各厂的产品的次品率分别为4%,2%,5%,现从中任取一件.(1)求取到的是次品的概率;(2)经检验发现取到的产品为次品,求该产品是甲厂生产的概率.【解题指导】(1)利用相互独立事件的概率乘法公式,即可求解.(2)利用条件概率公式和相互独立事件的概率乘法公式即可求解.【典例2】(2022·湖北·房县第一中学校联考模拟预测)亚运会将在2022年9月10日至25日在浙江省杭州举办,为此,浙江省开展了青少年亚运会知识问答竞赛,参赛人员所得分数的分组区间为,,,,由此得到总体的频率统计表:分数区间频率0.10.40.30.2(1)若从总体中利用分层抽样的方式随机抽取10名学生进行进一步调研.从这10名参赛学生中依次抽取3名进行调查分析,求在第一次抽出1名学生分数在区间内的条件下,后两次抽出的2名学生分数在的概率;(2)视样本的频率为概率,在该市所有参赛学生中任取3人,记取出的3人中分数在的人数为,求的分布列和数学期望.【解题指导】(1)分别计算出第一次抽出1名学生分数在区间内的概率和后两次抽出的2名学生分数在同一分组区间内的概率,然后,利用条件概率公式进行求解即可;(2)根据题意,符合二项分布的特征,然后,列出相应的分布列,利用相关的概率和期望公式,计算即可求解.条件概率的内含(1)公式P(A1|B)=eq\f(PA1B,PB)=eq\f(PA1PB|A1,PB)反映了P(A1B),P(A1),P(B),P(A1|B),P(B|A1)之间的互化关系.(2)P(A1)称为先验概率,P(A1|B)称为后验概率,其反映了事情A1发生的可能在各种可能原因中的比重.1.【与生活实践融合】(2023·云南昆明·昆明一中校考模拟预测)某批规格相同的产品由甲、乙、丙三个工厂共同生产,甲厂生产的产品次品率为2%,乙厂和丙厂生产的产品次品率均为4%,三个工厂生产的产品混放在一起,已知甲、乙、丙三个工厂生产的产品数分别占总数的40%,40%,20%.(1)任选一件产品,计算它是次品的概率;(2)如果取到的产品是次品,分别计算此次品出自甲厂、乙厂和丙厂的概率.2.【与频率分布直方图融合】(2022·重庆沙坪坝·重庆八中校考模拟预测)为了保障学生们的合法权益,并保证高考的公平性,重庆市施行的新高考方案中再选科目的高考成绩采用赋分制.赋分制在一定程度上缩小了试题难度不同带来的分数差,也在一定程度上减少了学科难度不一造成的分数差.2022年高考成绩公布后,重庆市某中学收集了部分学生的高考成绩,其中地理成绩均在(单位:分),将收集到的地理成绩按分组,得到频率分布直方图如下.(1)求,并估计该校2022年高考地理科的平均成绩;(同一组数据用该区间的中点值作代表)(2)已知该校2022年所有参加高考的学生中历史类考生占20%,物理类考生占80%,历史类考生中选考地理的占90%,物理类考生中选考地理的占5%,历史类考生中高考地理成绩不低于90分的占8%,若从该校2022年高考地理成绩不低于90分的学生中任选1名代表进行经验交流,求选到历史类考生的概率(以样本中各区间的频率作为相应事件的概率).3.【与党的建设融合】(2023·江苏徐州·徐州市第七中学校考一模)某学校为了迎接党的二十大召开,增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有5个选择题和3个填空题,乙箱中有4个选择题和3个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了2个题目,求第2题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了2个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.已知第三支部从乙箱中取出的这个题目是选择题,求第二支部从甲箱中取出的是2个选择题的概率.4.【与统计图表融合】(2021·广东深圳·统考一模)某校将进行篮球定点投篮测试,规则为:每人至多投次,先在处投一次三分球,投进得分,未投进不得分,以后均在处投两分球,每投进一次得分,未投进不得分.测试者累计得分高于分即通过测试,并终止投篮.甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在处和处各投次,根据他们每轮两分球和三分球的命中次数情况分别得到如图表:若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率.(1)求甲同学通过测试的概率;(2)在甲、乙两位同学均通过测试的条件下,求甲得分比乙得分高的概率.5.【决策问题】(2020·黑龙江哈尔滨·哈尔滨三中校考一模)哈三中总务处的老师要购买学校教学用的粉笔,并且有非常明确的判断一盒粉笔是“优质产品”和“非优质产品”的方法.某品牌的粉笔整箱出售,每箱共有20盒,根据以往的经验,其中会有某些盒的粉笔为非优质产品,其余的都为优质产品.并且每箱含有0,1,2盒非优质产品粉笔的概率为0.7,0.2和0.1.为了购买该品牌的粉笔,校总务主任设计了一种购买的方案:欲买一箱粉笔,随机查看该箱的4盒粉笔,如果没有非优质产品,则购买,否则不购买.设“买下所查看的一箱粉笔”为事件,“箱中有件非优质产品”为事件.(1)求,,;(2)随机查看该品牌粉笔某一箱中的四盒,设为非优质产品的盒数,求的分布列及期望;(3)若购买100箱该品牌粉笔,如果按照主任所设计方案购买的粉笔中,箱中每盒粉笔都是优质产品的箱数的期望比随机购买的箱中每盒粉笔都是优质产品的箱数的期望大10,则所设计的方案有效.讨论该方案是否有效.6.【决策问题】(2023·河南·校联考二模)2020年席卷全球的新冠肺炎给世界人民带来了巨大的灾难,面对新冠肺炎,早发现、早诊断、早隔离、早治疗是有效防控疾病蔓延的重要举措之一.某社区对位居民是否患有新冠肺炎疾病进行筛查,先到社区医务室进行口拭子核酸检测,检测结果成阳性者,再到医院做进一步检查,已知随机一人其口拭子核酸检测结果成阳性的概率为%,且每个人的口拭子核酸是否呈阳性相互独立.(1)假设该疾病患病的概率是%,且患病者口拭子核酸呈阳性的概率为%,设这位居民中有一位的口拭子核酸检测呈阳性,求该居民可以确诊为新冠肺炎患者的概率;(2)根据经验,口拭子核酸检测采用分组检测法可有效减少工作量,具体操作如下:将位居民分成若干组,先取每组居民的口拭子核酸混在一起进行检测,若结果显示阴性,则可断定本组居民没有患病,不必再检测;若结果显示阳性,则说明本组中至少有一位居民患病,需再逐个进行检测,现有两个分组方案:方案一:将位居民分成组,每组人;方案二:将位居民分成组,每组人;试分析哪一个方案的工作量更少?(参考数据:,)7.【与回归方程融合】(2022·江西新余·新余四中校联考二模)某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱,现统计了连续天的售出和收益情况,如下表:售出水量(单位:箱)收益(单位:元)(1)若每天售出箱水,求预计收益是多少元?(2)期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前名,获一等奖学金元;考入年级前名,获二等奖学金元;考入年级名以后的特困生不获得奖学金.甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.①在学生甲获得奖学金的条件下,求他获得一等奖学金的概率;②已知甲、乙两名学生获得哪个等第的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额的分布列及数学期望附:8.【决策问题】(2022·广东佛山·统考一模)单位计划组织55名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为1%,且每个人血检是否呈阳性相互独立.(Ⅰ)根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.现有两个分组方案:方案一:将55人分成11组,每组5人;方案二:将55人分成5组,每组11人;试分析哪一个方案工作量更少?(Ⅱ)若该疾病的患病率为0.4%,且患该疾病者血检呈阳性的概率为99%,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据:)9.【与独立事件融合】(2022·辽宁大连·统考二模)2022年2月4日至2月20日,北京冬奥会在我国盛大举行.在冬奥会如火如荼地进行过程中,不少外国运动员纷纷化身“干饭人”,在社交媒体上发布沉浸式“吃播”,直呼“好吃到舍不得回家”.其中麻辣烫、豆沙包、宫保鸡丁、饺子……不少传统中国美食也借此机会频频亮相.2月16日美联社称麻辣烫成为欧洲部分运动员眼中最好吃的冬奥会美食.荷兰速滑运动员尤塔·里尔达姆(juttaleerdam)就对麻辣烫赞不绝口,在社交媒体上发布的视频获得20多万点赞.西班牙冰舞选手奥利维亚·斯马特(oliviasmart)和搭档阿德里安·迪亚斯(adriandiaz)也告诉美联社,他们每天都在食堂吃麻辣烫.针对于此,欧洲某中餐馆决定在餐厅售卖麻辣烫.该中餐馆通过中国美食协会共获得两种不同地方特色麻辣烫配方(分别称为A配方和B配方),并按这两种配方制作售卖.由于不熟悉当地居民是否能吃辣,故按照麻辣程度定义了每碗麻辣烫的麻辣值(麻辣值越大表明越麻辣),得到下面第一天的售卖结果:A配方的售卖频数分布表麻辣值分组频数1020421810B配方的售卖频数分布表麻辣值分组频数1822381210定义本餐厅麻辣烫的“麻辣度指数”如下表:麻辣值麻辣度指数345(1)试分别估计第一天A配方,B配方售卖的麻辣烫的麻辣值的平均数(同一组中的数据用该组区间的中点值为代表),并比较大小.(2)用样本估计总体,将频率视为概率,从当地同时吃过两种配方麻辣烫的消费者中随机抽取1人进行调查,试估计其评价A配方的“麻辣度指数”比B配方的“麻辣度指数”高的概率.10.【与数列融合】(2023·河北衡水·衡水市第二中学校考模拟预测)某游戏中的角色“突击者”的攻击有一段冷却时间(即发动一次攻击后需经过一段时间才能再次发动攻击).其拥有两个技能,技能一是每次发动攻击后有的概率使自己的下一次攻击立即冷却完毕并直接发动,该技能可以连续触发,从而可能连续多次跳过冷却时间持续发动攻击;技能二是每次发动攻击时有的概率使得本次攻击以及接下来的攻击的伤害全部变为原来
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职铁道机车车辆制造与维护(铁道工程实务)试题及答案
- 2025年中职(汽车运用与维修)汽车发动机维修阶段测试试题及答案
- 2026年纪念日与节日场景定制项目可行性研究报告
- 2026年康复理疗(刮痧理疗操作)试题及答案
- 2025年高职(畜牧工程技术)畜禽舍设计实务测试题及答案
- 2025年高职船舶电子电气工程(设备调试)试题及答案
- 2025年中职(建筑材料检测)材料质量检验试题及答案
- 2025年中职至大学阶段(服装类)专业技能综合测试试题及答案
- 2025年高职(护理)静脉输液操作试题及答案
- 2025年高职(大数据与会计)会计应用阶段测试题及答案
- 消费类半固态电池项目可行性研究报告
- 沟槽开挖应急预案
- DBJ04∕T 398-2019 电动汽车充电基础设施技术标准
- 山东省济南市2024年1月高二上学期学情期末检测英语试题含解析
- 口腔门诊医疗质控培训
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- HGT4134-2022 工业聚乙二醇PEG
- 小学教职工代表大会提案表
- ESC2023年心脏起搏器和心脏再同步治疗指南解读
- 《泰坦尼克号》拉片分析
- 基层版胸痛中心建设标准课件
评论
0/150
提交评论