版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省张掖市甘州区张掖二中2024届数学高一上期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④2.已知命题,则p的否定为()A. B.C. D.3.若,则tanθ等于()A.1 B.-1C.3 D.-34.下列函数,表示相同函数的是()A., B.,C., D.,5.要想得到函数的图像,只需将函数的图象A.向左平移个单位,再向上平移1个单位 B.向右平移个单位,再向上平移1个单位C.向左平移个单位,再向下平移1个单位 D.向右平移个单位,再向上平移1个单位6.已知集合,,则()A. B.C. D.7.已知,则的值为()A.-4 B.C. D.48.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.9.函数的图像的一个对称中心是A. B.C. D.10.化简的结果是()A. B.1C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.设常数使方程在闭区间上恰有三个不同的解,则实数的取值集合为________,_______12.已知为的外心,,,,且;当时,______;当时,_______.13.奇函数f(x)是定义在[-2,2]上的减函数,若f(2a+1)+f(4a-3)>0,则实数a的取值范围是_______14.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.15.已知球有个内接正方体,且球的表面积为,则正方体的边长为__________16.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是幂函数,是指数函数,且满足,(1)求函数,的解析式;(2)若,,请判断“是的什么条件?(“充分不必要条件”或“必要不充分条件”或“充要条件”或“既不充分也不必要条件”)18.求下列函数的值域(1)(2)19.已知直线l:与x轴交于A点,动圆M与直线l相切,并且和圆O:相外切求动圆圆心M的轨迹C的方程若过原点且倾斜角为的直线与曲线C交于M、N两点,问是否存在以MN为直径的圆过点A?若存在,求出实数m的值;若不存在,说明理由20.函数的部分图象如图:(1)求解析式;(2)写出函数在上的单调递减区间.21.某网站为调查某项业务的受众年龄,从订购该项业务的人群中随机选出200人,并将这200人的年龄按照,,,,分成5组,得到的频率分布直方图如图所示:(1)求的值和样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求这2人中恰有1人年龄在中的概率
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【题目详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【题目点拨】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.2、D【解题分析】全称命题的否定为存在命题,利用相关定义进行判断即可【题目详解】全称命题的否定为存在命题,命题,则为.故选:D3、D【解题分析】由诱导公式及同角三角函数基本关系化简原式即可求解.【题目详解】由已知即故选:D【题目点拨】本题考查诱导公式及同角三角函数基本关系,属于简单题.4、B【解题分析】由两个函数相同的定义,定义域相同且对应法则相同,依次判断即可【题目详解】选项A,一个为指数运算、一个为对数运算,对应法则不同,因此不为相同函数;选项B,,为相同函数;选项C,函数定义域为,函数定义域为,因此不为相同函数;选项D,与函数对应法则不同,因此不为相同函数故选:B5、B【解题分析】,因此把函数的图象向右平移个单位,再向上平移1个单位可得的图象,故选B.6、D【解题分析】先求出集合B,再求出两集合的交集即可【题目详解】由,得,所以,因为,所以,故选:D7、A【解题分析】由题,解得.故选A.8、D【解题分析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.9、C【解题分析】令,得,所以函数的图像的对称中心是,然后赋值即可【题目详解】因为的图像的对称中心为.由,得,所以函数的图像的对称中心是.令,得.【题目点拨】本题主要考查正切函数的对称性,属基础题10、B【解题分析】利用三角函数的诱导公式化简求解即可.【题目详解】原式.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解题分析】利用辅助角公式可将问题转化为在上直线与三角函数图象的恰有三个交点,利用数形结合可确定的取值;由的取值可求得的取值集合,从而确定的值,进而得到结果.【题目详解】,方程的解即为在上直线与三角函数图象的交点,由图象可知:当且仅当时,直线与三角函数图象恰有三个交点,即实数的取值集合为;,或,即或,此时,,,.故答案为:;.【题目点拨】思路点睛:本题考查与三角函数有关的方程根的个数问题,解决方程根的个数的基本思路是将问题转化为两函数交点个数问题,从而利用数形结合的方式来进行求解.12、(1).(2).【解题分析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.【题目详解】当时,由可得,,所以,为外接圆的直径,则,此时;如下图所示:取的中点,连接,则,所,,同理可得.所以,,整理得,解得,,,因此,.故答案为:;.【题目点拨】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.13、[【解题分析】利用函数的奇偶性、单调性去掉不等式中的符号“f”,可转化为具体不等式,注意函数定义域【题目详解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)为奇函数,得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定义在[-2,2]上的减函数,∴解得:1即a∈故答案为:1【题目点拨】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“f”14、【解题分析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【题目详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.15、【解题分析】设正方体的棱长为x,则=36π,解得x=故答案为16、[-,-)∪(,]【解题分析】利用周期与对称性得出f(x)的函数图象,根据交点个数列出不等式得出k的范围【题目详解】∵当x>2时,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期为1的函数,作出y=f(x)的函数图象如下:∵方程f(x)=kx恰有3个不同的根,∴y=f(x)与y=kx有三个交点,若k>0,则若k<0,由对称性可知.故答案为[-,-)∪(,].【题目点拨】本题考查了函数零点与函数图象的关系,函数周期与奇偶性的应用,方程根的问题常转化为函数图象的交点问题,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)“”是“”的必要不充分条件【解题分析】(1)利用待定系数法求得.(2)通过求函数的值域求得,由此确定充分、必要条件.【小问1详解】设,,则则,代入,∴,.【小问2详解】由(1)知,,,当时,,有,得,又由,有,得,故,当时,,有,得,又由,有,,解得,故,由,故“”是“”的必要不充分条件18、(1)(2)【解题分析】(1)由,可得,从而得出值域;(2)令将原函数转化为关于的二次函数,再求值域即可.【题目详解】(1)值域为(2)设当时y取最小值当时y取最大值所以其值域为【题目点拨】本题主要考查的是三角函数最值,主要用型和换元后转换成二次函数求最值,考查学生的分析问题,解决问题的能力,是基础题.19、(1)()(2)存在,【解题分析】(1)设出动圆圆心坐标,由动圆圆心到切线的距离等于动圆与定圆的圆心距减定圆的半径列式求解动圆圆心的轨迹方程;(2)求出过原点且倾斜角为的直线方程,和曲线C联立后利用根与系数关系得到M,N的横纵坐标的和与积,由,得列式求解m的值,结合m的范围说明不存在以MN为直径的圆过点A试题解析:(1)设动圆圆心为,则,化简得(),这就是动圆圆心的轨迹的方程.(2)直线的方程为,代入曲线的方程得显然.设,,则,,而若以为直径的圆过点,则,∴由此得∴,即.解得(舍去)故存在以为直径的圆过点点睛:本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,训练了利用数量积判断两个向量的垂直关系,考查了学生的计算能力.20、(1)(2)【解题分析】(1)根据图象求得,从而求得解析式.(2)利用整体代入法求得在区间上的单调递减区间.【小问1详解】由图象知,所以,又过点,令,由于,故所以.【小问2详解】由,可得,当时,故函数在上的单调递减区间为.21、(1),平均数为岁(2)【解题分析】(1)根据频率之和等于得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 未来五年租赁科技服务企业ESG实践与创新战略分析研究报告
- 未来五年精制茶籽油企业数字化转型与智慧升级战略分析研究报告
- 初中生物技术实验指导方案
- 春季学期人教版课时考核方案
- 2025年幼儿教师资格证综合素质真题(附答案)
- 2025年预防接种门诊工作制度、职责
- 酒店行业薪资及员工福利体系建设方案
- 小学阶段科学探索活动教学方案
- 医疗美容整形医院季度运营推广方案
- 新开奶茶店市场定位及推广策略
- 2026年辽宁省盘锦市高职单招语文真题及参考答案
- 近五年贵州中考物理真题及答案2025
- 2026年南通科技职业学院高职单招职业适应性测试备考试题含答案解析
- 2025年黑龙江省大庆市中考数学试卷
- 浙江省2026年1月普通高等学校招生全国统一考试英语试题(含答案含听力原文含音频)
- 《雅思阅读精讲》
- 产前检查的操作评分标准
- 50年同学聚会邀请函(十二篇)
- 临时用水施工方案
- LOTO上锁挂牌安全培训课件
- 江西省房屋建筑与装饰工程消耗量定额及统一基价表
评论
0/150
提交评论