北京海淀区北京一零一中学2024届数学高一上期末统考模拟试题含解析_第1页
北京海淀区北京一零一中学2024届数学高一上期末统考模拟试题含解析_第2页
北京海淀区北京一零一中学2024届数学高一上期末统考模拟试题含解析_第3页
北京海淀区北京一零一中学2024届数学高一上期末统考模拟试题含解析_第4页
北京海淀区北京一零一中学2024届数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京海淀区北京一零一中学2024届数学高一上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是A. B.C. D.2.若,则下列关系式一定成立的是()A. B.C. D.3.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.命题:“”的否定是()A. B.C. D.5.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.6.已知函数和,则下列结论正确的是A.两个函数的图象关于点成中心对称图形B.两个函数的图象关于直线成轴对称图形C.两个函数的最小正周期相同D.两个函数在区间上都是单调增函数7.若无论实数取何值,直线与圆相交,则的取值范围为()A. B.C. D.8.,则()A.64 B.125C.256 D.6259.四边形中,,且,则四边形是()A.平行四边形 B.菱形C.矩形 D.正方形10.已知角的终边经过点,则().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某医药研究所研发一种新药,如果成年人按规定的剂量服用,服药后每毫升血液中的含药量y(微克)与时间t(时)之间近似满足如图所示的关系.若每毫升血液中含药量不低于0.5微克时,治疗疾病有效,则服药一次治疗疾病的有效时间为___________小时.12.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.13.函数定义域为________.(用区间表示)14.已知函数()①当时的值域为__________;②若在区间上单调递增,则的取值范围是__________15.函数在一个周期内图象如图所示,此函数的解析式为___________.16.已知,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象过点,且满足(1)求函数的解析式:(2)求函数在上最小值;(3)若满足,则称为函数的不动点,函数有两个不相等且正的不动点,求t的取值范围18.已知的顶点、、,试求:(1)求边的中线所在直线方程;(2)求边上的高所在直线的方程.19.已知二次函数图象经过原点,函数是偶函数,方程有两相等实根.(1)求的解析式;(2)若对任意,恒成立,求实数的取值范围;(3)若函数与的图像有且只有一个公共点,求实数的取值范围.20.已知,是方程的两根.(1)求实数的值;(2)求的值;(3)求的值.21.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1,BD的中点(1)求证:EF∥平面ABD1;(2)AA1=,求异面直线EF与BC所成角的正弦值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】要取得最小值,则与共线且反向即位于的中线上,中线长为设,则则当时,取最小值,故选第II卷(非选择题2、A【解题分析】判断函数的奇偶性以及单调性,由此可判断函数值的大小,即得答案.【题目详解】由可知:,为偶函数,又,知在上单调递减,在上单调递增,故,故选:A.3、A【解题分析】分别讨论充分性与必要性,可得出答案.详解】由题意,,显然可以推出,即充分性成立,而不能推出,即必要性不成立.故“”是“”的充分而不必要条件.故选:A.【题目点拨】本题考查充分不必要条件,考查不等式的性质,属于基础题.4、C【解题分析】写出全称命题的否定即可.【题目详解】“”的否定是:.故选:C.5、C【解题分析】根据,可得,根据的单调性,即可求得结果.【题目详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【题目点拨】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.6、D【解题分析】由题意得选项A中,由于的图象关于点成中心对称,的图象不关于点成中心对称,故A不正确选项B中,由于函数的图象关于点成中心对称,的图象关于直线成轴对称图形,故B不正确选项C中,由于的周期为2π,的周期为π,故C不正确选项D中,两个函数在区间上都是单调递增函数,故D正确选D7、A【解题分析】利用二元二次方程表示圆的条件及点与圆的位置关系即得.【题目详解】由圆,可知圆,∴,又∵直线,即,恒过定点,∴点在圆的内部,∴,即,综上,.故选:A.8、D【解题分析】根据对数的运算及性质化简求解即可.【题目详解】,,,故选:D9、C【解题分析】由于,故四边形是平行四边形,根据向量加法和减法的几何意义可知,该平行四边形的对角线相等,故为矩形.10、A【解题分析】根据三角函数的概念,,可得结果.【题目详解】因为角终边经过点所以故选:A【题目点拨】本题主要考查角终边过一点正切值的计算,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据图象求出函数的解析式,然后由已知构造不等式,解不等式即可得解.【题目详解】当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有或,解得,所以,所以服药一次治疗疾病有效时间为个小时,故答案为:12、【解题分析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【题目详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【题目点拨】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.13、【解题分析】由对数真数大于0,偶次根式被开方式大于等于0,列出不等式组求解即可得答案.【题目详解】解:由,得,所以函数的定义域为,故答案为:.14、①.②.【解题分析】当时,分别求出两段函数的值域,取并集即可;若在区间上单调递增,则有,解之即可得解.【题目详解】解:当时,若,则,若,则,所以当时的值域为;由函数(),可得函数在上递增,在上递增,因为在区间上单调递增,所以,解得,所以若在区间上单调递增,则的取值范围是.故答案为:;.15、【解题分析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【题目详解】由图象可知,,,由,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,,又,,三角函数的解析式是.故答案为:.16、3【解题分析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【题目详解】因,所以.故答案为:3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】(1)根据f(x)图像过点,且满足列出关于m和n的方程组即可求解;(2)讨论对称轴与区间的位置关系,即可求二次函数的最小值;(3)由题可知方程x=g(x)有两个正根,根据韦达定理即可求出t范围.【小问1详解】∵的图象过点,∴①又,∴②由①②解,,∴;【小问2详解】,,当,即时,函数在上单调递减,∴;当,即时,函数在上单调递减,在单调递增,∴;当时,函数在上单调递增,∴综上,【小问3详解】设有两个不相等的不动点、,且,,∴,即方程有两个不相等的正实根、∴,解得18、(1);(2).【解题分析】(1)求出线段的中点坐标,利用两点式方程求出边上的中线所在的直线方程;(2)求出边所在直线的斜率,进而可以求出边上的高所在直线的斜率,利用点斜式求边上的高所在的直线方程【题目详解】解:(1)线段的中点坐标为所以边上的中线所在直线的方程是:,即;(2)由已知,则边上高的斜率是,边上的高所在直线方程是,即【题目点拨】本题考查直线的点斜式,两点式求直线的方程,属于基础题19、(1);(2);(3).【解题分析】(1)运用待定系数法,结合题目条件计算得,(2)分离参量,计算在上的最大值(3)转化为有且只有一个实数根,换元,关于的方程只有一个正实根,转化为函数问题解析:(1)设.由题意,得.∴,∵是偶函数,∴即.①∵有两相等实根,∴且②由①②,解得,∴.(2)若对任意,恒成立,只须在恒成立.令,,则.若对任意,恒成立,只须满足.∴.(3)函数与的图像有且只有一个公共点,即有且只有一个实数根,即有且只有一个实数根.令,则关于的方程(记为式)只有一个正实根.若,则不符合题意,舍去.若,则方程的两根异号,∴即.或者方程有两相等正根.解得∴.综上,实数取值范围是.点睛:本题是道综合题20、(1);(2);(3)【解题分析】(1)根据方程的根与系数关系可求,,然后结合同角平方关系可求,(2)结合(1)可求,,结合同角基本关系即可求,(3)利用将式子化为齐次式,再利用同角三角函数的基本关系,将弦化切,代入可求【题目详解】解:(1)由题意可知,,,∴,∴,∴,(2)方程的两根分别为,,∵,∴,∴,,则,(3)【题目点拨】本题主要考查了同角三角函数关系式和万能公式的应用,属于基本知识的考查21、(1)证明过程详见解析(2)【解题分析】(1)先证明EF∥D1B,即证EF∥平面ABD1.(2)先证明∠D1BC是异面直线EF与BC所成的角(或所成角的补角),再解三角形求其正弦值.【题目详解】(1)证明:连结BD1,在△DD1B中,E、F分别是D1D、DB的中点,∴EF是△DD1B的中位线,∴EF∥D1B,∵D1B⊂平面ABC1D1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论