版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省杭州市五校联考数学高一上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知关于x的不等式解集为,则下列说法错误的是()A.B.不等式的解集为C.D.不等式的解集为2.“是第一或第二象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.“,”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件4.下列四个选项中正确的是()A B.C. D.5.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定6.某几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.7.若为所在平面内一点,,则形状是A.等腰三角形 B.直角三角形C.正三角形 D.以上答案均错8.已知向量=(1,2),=(2,x),若⊥,则|2+|=()A. B.4C.5 D.9.下列各对角中,终边相同的是()A.和 B.和C.和 D.和10.已知集合,集合,则()A.0 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式x2-5x+6≤0的解集为______.12.计算_______.13.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.14.求值:____.15.求值:__________.16.已知函数有两个零点分别为a,b,则的取值范围是_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中.(1)若对任意实数,恒有,求的取值范围;(2)是否存在实数,使得且?若存在,则求的取值范围;若不存在,则加以证明.18.已知函数.求:(1)的值域;(2)的零点;(3)时x的取值范围19.已知为锐角,(1)求的值;(2)求的值20.已知平面直角坐标系内四点,,,.(1)判断的形状;(2)A,B,C,D四点是否共圆,并说明理由.21.已知,且(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据已知条件得和是方程的两个实根,且,根据韦达定理可得,根据且,对四个选项逐个求解或判断可得解.【题目详解】由已知可得-2,3是方程的两根,则由根与系数的关系可得且,解得,所以A正确;对于B,化简为,解得,B正确;对于C,,C正确;对于D,化简为:,解得,D错误故选:D.2、A【解题分析】利用充分必要条件的定义判断.【题目详解】若角的终边在第一或第二象限,则,反过来,若,则的终边可能在第一或第二象限,也有可能在轴正半轴上.所以“是第一或第二象限角”是“”的充分不必要条件.故选:A3、A【解题分析】根据充分条件和必要条件的定义判断.【题目详解】∵“,”可推出“”,“”不能推出“,”,例如,时,,∴“,”是“”充分不必要条件.故选:A4、D【解题分析】根据集合与集合关系及元素与集合的关系判断即可;【题目详解】解:对于A:,故A错误;对于B:,故B错误;对于C:,故C错误;对于D:,故D正确;故选:D5、A【解题分析】已知式平方后可判断为正判断的正负,从而判断三角形形状【题目详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A6、C【解题分析】根据三视图,作出几何体的直观图,根据题中条件,逐一求解各个面的表面积,综合即可得答案.【题目详解】根据三视图,作出几何体的直观图,如图所示:由题意得矩形的面积,矩形的面积,矩形的面积,正方形、的面积,五边形的面积,所以该几何体的表面积为,故选:C7、A【解题分析】根据向量的减法运算可化简已知等式为,从而得到三角形的中线和底边垂直,从而得到三角形形状.详解】三角形的中线和底边垂直是等腰三角形本题正确选项:【题目点拨】本题考查求解三角形形状的问题,关键是能够通过向量的线性运算得到数量积关系,根据数量积为零求得垂直关系.8、C【解题分析】根据求出x的值,再利用向量的运算求出的坐标,最后利用模长公式即可求出答案【题目详解】因为,所以解得,所以,因此,故选C【题目点拨】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质9、C【解题分析】利用终边相同的角的定义,即可得出结论【题目详解】若终边相同,则两角差,A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.,故D选项错误.故选:C.【题目点拨】本题考查终边相同的角的概念,属于基础题.10、B【解题分析】由集合的表示方法以及交集的概念求解.【题目详解】由题意,集合,,∴.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据二次函数的特点即可求解.【题目详解】由x2-5x+6≤0,可以看作抛物线,抛物线开口向上,与x轴的交点为,∴,即原不等式的解集为.12、【解题分析】利用指数的运算法则求解即可.【题目详解】原式.故答案为:.【题目点拨】本题主要考查了指数的运算法则.属于容易题.13、【解题分析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【题目详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:14、【解题分析】根据诱导公式以及正弦的两角和公式即可得解【题目详解】解:因为,故答案为:15、【解题分析】利用诱导公式一化简,再求特殊角正弦值即可.【题目详解】.故答案为:.16、【解题分析】根据函数零点可转化为有2个不等的根,利用对数函数的性质可知,由均值不等式求解即可.详解】不妨设,因为函数有两个零点分别为a,b,所以,所以,即,且,,当且仅当,即时等号成立,此时不满足题意,,即,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解题分析】(1)首先求出在上的最大值,问题转化为对任意成立,然后化简不等式,参变分离构造即可.(2)分a>0和a<0两种情况讨论,去掉绝对值符号,转化为解不等式的问题.【小问1详解】,,,∴,∴原问题对任意成立,即对任意成立,即对任意成立,∴.故a的范围是:.【小问2详解】①,,∵,∴,∴不等式变为,∴;(2),,∵,∴此时无解.综上所述,存在满足题意.18、(1);(2)-1,2;(3)【解题分析】(1)利用配方法求二次函数值域即可;(2)由的零点即是的根,再解方程即可;(3)由“三个二次”的关系,即是函数的图象在y轴下方,观察图像即可得解.【题目详解】解:(1)将函数化为完全平方式,得,故函数的值域;(2)的零点即是的根,令,解方程得方程的根为-1和2,故得函数的零点-1,2;(3)由图得即是函数图象在y轴下方,时x的取值范围即在两根之间,故x的取值范围是.【题目点拨】本题考查了二次函数值域的求法,重点考查了“三个二次”的关系,属中档题.19、(1);(2).【解题分析】(1)根据题中条件,求出,,再由两角差的余弦公式,求出,根据二倍角公式,即可求出结果;(2)由(1)求出,,再由两角差的正切公式,即可求出结果.【题目详解】(1),为锐角,且,,则,,,,;(2)由(1),所以,则,又,,;.20、(1)是等腰直角三角形(2)A,B,C,D四点共圆;理由见解析【解题分析】(1)利用两点间距离公式可求得,再利用斜率公式可得到,即可判断三角形形状;(2)由(1)先求得的外接圆,再判断点是否在圆上即可【题目详解】解:(1),,,又,,即,∴是等腰直角三角形(2)A,B,C,D四点共圆;由(1),设的外接圆的圆心为,则,即,解得,此时,所以的外接圆的方程为,将D点坐标代入方程得,即D点在的外接圆上.∴A,B,C,D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店行业预算考核制度
- 机修班组奖罚考核制度
- 销售人员岗位考核制度
- 员工外出登记考核制度
- 培训中心员考核制度
- 湖南省永州一中2026届高一下生物期末质量跟踪监视模拟试题含解析
- 漳州市华安县招聘协管员考试真题及答案
- 医院《医疗纠纷预防和处理条例》培训考试试题(附答案)
- 心血管内科实习医生出科试题附答案
- 中医针推试题及答案
- 锰及化合物职业健康安全防护须知
- 2026年北京市房山区公安招聘辅警考试试题及答案
- 生死观与死亡教育
- 中建物资管理手册
- 嘉里大通物流公司员工行为规范指南
- 快易冷储罐知识培训课件
- 新能源材料与器件制备技术 课件 第5章 锂离子电池正极材料
- 消防监控证试题及答案
- 棋牌室转让合同协议书
- 装饰工程临电临水施工方案
- 吊车租赁合同范本
评论
0/150
提交评论