江西省吉安市吉水中学2024届高一数学第一学期期末联考试题含解析_第1页
江西省吉安市吉水中学2024届高一数学第一学期期末联考试题含解析_第2页
江西省吉安市吉水中学2024届高一数学第一学期期末联考试题含解析_第3页
江西省吉安市吉水中学2024届高一数学第一学期期末联考试题含解析_第4页
江西省吉安市吉水中学2024届高一数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省吉安市吉水中学2024届高一数学第一学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图是一几何体的平面展开图,其中四边形为正方形,,,,为全等的等边三角形,分别为的中点.在此几何体中,下列结论中错误的为A.直线与直线共面 B.直线与直线是异面直线C.平面平面 D.面与面的交线与平行2.已知函数,若实数满足,则实数的取值范围是()A. B.C. D.3.下列各式不正确的是()A.sin(α+)=-sinα B.cos(α+)=-sinαC.sin(-α-2)=-sinα D.cos(α-)=sinα4.函数的单调递减区间是()A. B.C. D.5.函数的定义域是()A.(-2,] B.(-2,)C.(-2,+∞) D.(,+∞)6.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则图中阴影部分表示的集合的真子集有()个A.3 B.4C.7 D.87.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-28.已知向量且,则x值为().A.6 B.-6C.7 D.-79.已知点P(cosα,sinα),Q(cosβ,sinβ),则的最大值是()A. B.2C.4 D.10.C,S分别表示一个扇形的周长和面积,下列能作为有序数对取值的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是__________.12.已知向量的夹角为,,则__________.13.等比数列中,,则___________14.已知函数,则下列说法正确的有________.①的图象可由的图象向右平移个单位长度得到②在上单调递增③在内有2个零点④在上的最大值为15.已知函数(1)利用五点法画函数在区间上的图象(2)已知函数,若函数的最小正周期为,求的值域和单调递增区间;(3)若方程在上有根,求的取值范围16.函数的定义域为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.18.已知函数,不等式的解集为(1)求不等式的解集;(2)当在上单调递增,求m的取值范围19.已知函数,且.(1)求实数a的值;(2)判断函数在上的单调性,并证明.20.已知函数f(x)=Asin(ωx+)

(x∈R,A>0,ω>0,||<)的部分图象如图所示,(Ⅰ)试确定f(x)的解析式;(Ⅱ)若=,求cos(-α)的值21.已知全集,集合,集合.(1)若,求;(2)若“”是“”必要不充分条件,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确故答案选C2、D【解题分析】由题可得函数关于对称,且在上单调递增,在上单调递减,进而可得,即得.【题目详解】∵函数,定义域为,又,所以函数关于对称,当时,单调递增,故函数单调递增,∴函数在上单调递增,在上单调递减,由可得,,解得,且.故选:D.3、B【解题分析】将视为锐角,根据“奇变偶不变,符号看象限”得出答案.【题目详解】将视为锐角,∵在第三象限,正弦为负值,且是的2倍为偶数,不改变三角函数的名称,∴,A正确;∵在第四象限,余弦为正值,且是的3倍为奇数数,要改变三角函数的名称,∴,B错误;∵,在第四象限,正弦为负值,且0是的0倍为偶数,不改变三角函数的名称,∴,C正确;∵在第四象限,余弦为正值,且是的1倍为奇数,要改变三角函数的名称,∴,D正确.故选:B.4、D【解题分析】解不等式,即可得出函数的单调递减区间.【题目详解】解不等式,得,因此,函数的单调递减区间为.故选:D.【题目点拨】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题.5、B【解题分析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解【题目详解】解:由,解得函数的定义域是故选:B【题目点拨】本题考查函数的定义域及其求法,属于基础题6、C【解题分析】先求出A∩B={3,5},再求出图中阴影部分表示的集合为:CU(A∩B)={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数【题目详解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:CU(A∩B)={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C【题目点拨】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题7、D【解题分析】由奇函数定义得,从而求得,然后由计算【题目详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【题目点拨】本题考查奇函数的定义,掌握奇函数的概念是解题关键8、B【解题分析】利用向量垂直的坐标表示可以求解.【题目详解】因为,,所以,即;故选:B.【题目点拨】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.9、B【解题分析】,则,则的最大值是2,故选B.10、B【解题分析】设扇形半径为,弧长为,则,,根据选项代入数据一一检验即可【题目详解】设扇形半径为,弧长为,则,当,有,则无解,故A错;当,有得,故B正确;当,有,则无解,故C错;当,有,则无解,故D错;故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、{|且}【解题分析】根据函数,由求解.【题目详解】因为函数,所以,解得,所以函数的定义域是{|且},故答案为:{|且}12、【解题分析】由已知得,所以,所以答案:点睛:向量数量积的求法及注意事项:(1)计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用(2)求向量模的常用方法:利用公式,将模的运算转化为向量的数量积的运算,解题时要注意向量数量积运算率的灵活应用(3)利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧13、【解题分析】等比数列中,由可得.等比数列,构成以为首项,为公比的等比数列,所以【题目点拨】若数列为等比数列,则构成等比数列14、②③【解题分析】化简函数,结合三角函数的图象变换,可判定①不正确;根据正弦型函数的单调的方法,可判定②正确;令,求得,可判定③正确;由,得到,结合三角函数的性质,可判定④正确.【题目详解】由函数,对于①中,将函数的图象向右平移个单位长度,得到,所以①不正确;对于②中,令,解得,当时,可得,即函数在上单调递增,所以函数在上单调递增,所以②正确;对于③中,令,可得,解得,当时,可得;当时,可得,所以内有2个零点,所以③正确;对于④中,由,可得,当时,即时,函数取得最大值,最大值为,所以④不正确.故答案为:②③.15、(1)(2)的值域为,单调递增区间为;(3)【解题分析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围.【小问1详解】作出表格如下:x0020-20在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图:【小问2详解】,其中,由题意得:,解得:,故,故的值域为,令,解得:,所以的单调递增区间为:【小问3详解】因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是.16、且【解题分析】由根式函数和分式函数的定义域求解.【题目详解】由,解得且,所以函数的定义域为且故答案为:且三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期,单调递增区间为,;(2)时函数取得最小值,时函数取得最大值;【解题分析】(1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为,即,所以函数的最小正周期,令,,解得,,所以函数的单调递增区间为,;【小问2详解】解:因为,所以,所以当,即时函数取得最小值,即,当,即时函数取得最大值,即;18、(1);(2)﹒【解题分析】(1)根据二次不等式的解法求出b和c即可;(2)g(x)为开口向下的二次函数,要在[1,2]上递增,则对称轴为x=2或在x=2的右侧.【小问1详解】∵的解集为,∴1和2为方程的根,∴,则可得;∴,∴,即解集为:;【小问2详解】∵在上单调递增,∴,故,m的取值范围为:﹒19、(1)(2)增函数,证明见解析【解题分析】(1)根据,由求解;(2)利用单调性的定义证明.【小问1详解】解:∵,且,∴,∴;【小问2详解】函数在上是增函数.任取,不妨设,则,,∵且,∴,,,∴,即,∴在上是增函数.20、(1);(2).【解题分析】(Ⅰ)由图象可知A=2,=-=,∴T=2,ω==π将点(,2)代入y=2sin(πx),得sin()=1,又||<所以=.故所求解析式为f(x)=2sin(πx+)(x∈R)(Ⅱ)∵f()=,∴2sin(+)=,即,sin(+)=∴cos(-a)=cos[π-2(+)]=-cos2(+)=2sin2(+)-1=考点:由y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论