辽宁省抚顺市一中2024届数学高一上期末综合测试试题含解析_第1页
辽宁省抚顺市一中2024届数学高一上期末综合测试试题含解析_第2页
辽宁省抚顺市一中2024届数学高一上期末综合测试试题含解析_第3页
辽宁省抚顺市一中2024届数学高一上期末综合测试试题含解析_第4页
辽宁省抚顺市一中2024届数学高一上期末综合测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省抚顺市一中2024届数学高一上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最大值与最小值分别为()A.3,-1 B.3,-2C.2,-1 D.2,-22.长方体中,,,则直线与平面ABCD所成角的大小A. B.C. D.3.若a,b是实数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.在R上定义运算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1对任意的实数x∈R恒成立,则实数a的取值范围为()A.-1<a<1 B.0<a<2C.-<a< D.-<a<5.四棱柱中,,,则与所成角为A. B.C. D.6.已知全集,集合,则A. B.C. D.7.函数在一个周期内的图象如图所示,则其表达式为A. B.C. D.8.在某次测量中得到的样本数据如下:.若样本数据恰好是样本数据都加2后所得数据,则两样本的下列数字特征对应相同的是()A.众数 B.平均数C.标准差 D.中位数9.棱长分别为1、、2的长方体的8个顶点都在球的表面上,则球的体积为A. B.C. D.10.下列函数中,在其定义域内既是增函数又是奇函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在用二分法求方程的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________.12.已知,,,则,,的大小关系是______.(用“”连接)13.函数最大值为__________14.已知,则函数的最大值是__________15.锐角中,分别为内角的对边,已知,,,则的面积为__________16.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数fx(1)当对称轴为x=-1时,(i)求实数a的值;(ii)求f(x)在区间-2,2上的值域.(2)解不等式fx18.计算或化简:(1);(2)19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时)20.求值:(1)(2)2log310+log30.8121.已知向量,满足,,且,的夹角为.(1)求;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】分析:将化为,令,可得关于t的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,设,则,根据二次函数性质当时,y取最大值2,当时,y取最小值.故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为的形式,用换元法求解;另一种是将解析式化为的形式,根据角的范围求解.2、B【解题分析】连接,根据长方体的性质和线面角的定义可知:是直线与平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用锐角三角函数知识可以求出的大小.【题目详解】连接,在长方体中,显然有平面ABCD,所以是直线与平面ABCD所成角,在底面ABCD中,,在中,,故本题选B.【题目点拨】本题考查了线面角的求法,考查了数学运算能力.3、B【解题分析】由对数函数单调性即可得到二者之间的逻辑关系.【题目详解】由可得;但是时,不能得到.则是的必要不充分条件故选:B4、C【解题分析】根据新定义把不等式转化为一般的一元二次不等式,然后由一元二次不等式恒成立得结论【题目详解】∵(x-a)⊙(x+a)=(x-a)(1-x-a),∴不等式(x-a)⊙(x+a)<1,即(x-a)(1-x-a)<1对任意实数x恒成立,即x2-x-a2+a+1>0对任意实数x恒成立,所以Δ=1-4(-a2+a+1)<0,解得,故选:C.5、D【解题分析】四棱柱中,因为,所以,所以是所成角,设,则,+=,所以,所以+=,所以,所以选择D6、C【解题分析】由集合,根据补集和并集定义即可求解.【题目详解】因为,即集合由补集的运算可知根据并集定义可得故选:C【题目点拨】本题考查了补集和并集的简单运算,属于基础题.7、A【解题分析】由图象得,周期,所以,故又由条件得函数图象的最高点为,所以,故,又,所以,故函数的解析式为.选A8、C【解题分析】分别求两个样本的数字特征,再判断选项.【题目详解】A样本数据是:,样本数据是:,A样本的众数是48,B样本的众数是50,故A错;A样本的平均数是,B样本的平均数是,故B错;A样本的标准差B样本的标准差,,故C正确;A样本的中位数是,B样本的中位数是,故D错.故选:C9、A【解题分析】球的直径为长方体的体对角线,又体对角线的长度为,故体积为,选A.10、D【解题分析】在定义域每个区间上为减函数,排除.是非奇非偶函数,排除.故选.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据二分法,取区间中点值,而,,所以,故判定根区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间12、【解题分析】结合指数函数、对数函数的知识确定正确答案.【题目详解】,,所以故答案为:13、3【解题分析】分析:利用复合函数的性质求已知函数的最大值.详解:由题得当=1时,函数取最大值2×1+1=3.故答案为3.点睛:本题主要考查正弦型函数的最大值,意在考查学生对该基础知识的掌握水平.14、【解题分析】由函数变形为,再由基本不等式求得,从而有,即可得到答案.【题目详解】∵函数∴由基本不等式得,当且仅当,即时取等号.∴函数的最大值是故答案为.【题目点拨】本题主要考查线性规划的应用以及基本不等式的应用,.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).15、【解题分析】由已知条件可得,,再由正弦定理可得,从而根据三角形内角和定理即可求得,从而利用公式即可得到答案.【题目详解】,由得,又为锐角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案为.【题目点拨】三角形面积公式的应用原则:(1)对于面积公式S=absinC=acsinB=bcsinA,一般是已知哪一个角就使用哪一个公式(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化16、1【解题分析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(i)-13;(ii)(2)答案见解析.【解题分析】(1)(i)解方程(a+1)2a=-1即得解;((2)对a分类讨论解不等式.【小问1详解】解:(i)由题得--(a+1)(ii)fx=-1所以当x∈-2,2时,ff(x)所以f(x)在区间-2,2上的值域为[-5【小问2详解】解:ax当a=0时,-x+1≥0,∴x≤1;当a>0时,(ax-1)(x-1)≥0,∴x当0<a<1时,不等式解集为{x|x≥1a或x≤1}当a=1时,不等式的解集为R;当a>1时,不等式的解集为{x|x≥1或x≤1当a<0时,(ax-1)(-x+1)≤0,∴x所以不等式的解集为{x|1综上,当a=0时,不等式的解集为{x|x≤1}当0<a<1时,不等式的解集为{x|x≥1a或当a=1时,不等式的解集为R;当a>1时,不等式的解集为{x|x≥1或x≤1当a<0时,不等式的解集为{x|118、(1)(2)1【解题分析】(1)根据指数幂的运算算出答案即可;(2)根据对数的运算算出答案即可.【小问1详解】【小问2详解】19、(1)(2)3333辆/小时【解题分析】(1)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为(2)依题并由(1)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200]上取得最大值综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:(1)函数v(x)的表达式(2)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时20、(1)(2)4【解题分析】(1)利用分数指数幂的性质运算即可;(2)利用对数的运算性质计算可得结果.试题解析:(1),(2)2log310+log3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论