四川省绵阳市2024届高一数学第一学期期末监测模拟试题含解析_第1页
四川省绵阳市2024届高一数学第一学期期末监测模拟试题含解析_第2页
四川省绵阳市2024届高一数学第一学期期末监测模拟试题含解析_第3页
四川省绵阳市2024届高一数学第一学期期末监测模拟试题含解析_第4页
四川省绵阳市2024届高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省绵阳市2024届高一数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息()元.(参考数据:)A.176 B.100C.77 D.882.若log2a<0,,则()A.a>1,b>0 B.a>1,b<0C.0<a<1,b>0 D.0<a<1,b<03.设函数,若关于的方程有四个不同的解,且,则的取值范围是()A. B.C. D.4.已知函数是偶函数,且,则()A. B.0C.2 D.45.下列函数中为奇函数,且在定义域上为增函数的有()A. B.C. D.6.箱子中放有一双红色和一双黑色的袜子,现从箱子中同时取出两只袜子,则取出的两只袜子正好可以配成一双的概率为()A. B.C. D.7.已知实数,且,则的最小值是()A.6 B.C. D.8.当时,,则a的取值范围是A.(0,) B.(,1)C.(1,) D.(,2)9.函数的最小正周期为()A. B.C. D.10.已知集合,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数,则________12.如图,在四面体ABCD中,AB⊥平面BCD,△BCD是边长为6的等边三角形.若AB=4,则四面体ABCD外接球的表面积为________13.函数(且)的图象恒过定点_________14.某医药研究所研发一种新药,如果成年人按规定的剂量服用,服药后每毫升血液中的含药量y(微克)与时间t(时)之间近似满足如图所示的关系.若每毫升血液中含药量不低于0.5微克时,治疗疾病有效,则服药一次治疗疾病的有效时间为___________小时.15.函数的定义域是___________,若在定义域上是单调递增函数,则实数的取值范围是___________16.已知,则函数的最大值为___________,最小值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(且)(1)若函数存在零点,求实数的最小值;(2)若函数有两个零点分别是,且对于任意的时恒成立,求实数的取值集合.18.2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图(1)求a的值以及这100人中测试成绩在[80,85)的人数;(2)估计全市老师测试成绩的平均数(同组中的每个数据都用该组区间中点值代替)和第50%分数位(保留两位小数);(3)若要从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率19.如图所示,已知长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD(1)求证:直线CM⊥面DFN;(2)求点C到平面FDM的距离20.已经函数(Ⅰ)函数的图象可由函数的图象经过怎样变化得出?(Ⅱ)求函数的最小值,并求使用取得最小值的的集合21.甲、乙两城相距100km,某天然气公司计划在两地之间建天然气站P给甲、乙两城供气,设P站距甲城.xkm,为保证城市安全,天然气站距两城市的距离均不得少于10km.已知建设费用y(万元)与甲、乙两地的供气距离(km)的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P距甲城的距离为40km时,建设费用为1300万元.(1)把建设费用y(万元)表示成P站与甲城的距离x(km)的函数,并求定义域;(2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案【题目详解】由题意,某同学有压岁钱1000元,存入银行,年利率为2.25%,若在银行存放5年,可得金额为元,即利息为元,若放入微信零钱通或者支付宝的余额宝时,利率可达4.01%,若存放5年,可得金额为元,即利息为元,所以将这1000元选择合适方式存满5年,可以多获利息元,故选B【题目点拨】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题2、D【解题分析】,则;,则,故选D3、D【解题分析】由题意,根据图象得到,,,,,推出.令,,而函数.即可求解.【题目详解】【题目点拨】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.4、D【解题分析】由偶函数定义可得,代入可求得结果.【题目详解】为偶函数,,,故选:D5、C【解题分析】根据函数的奇偶性,可排除A,B;说明的奇偶性以及单调性,可判断C;根据的单调性,判断D.【题目详解】函数为非奇非偶函数,故A错;函数为偶函数,故B错;函数,满足,故是奇函数,在定义域R上,是单调递增函数,故C正确;函数在上是增函数,在上是增函数,在定义域上不单调,故D错,故选:C6、B【解题分析】先求出试验的样本空间,再求有利事件个数,最后用概率公式计算即可.【题目详解】两只红色袜子分别设为,,两只黑色袜子分别设为,,这个试验的样本空间可记为,共包含6个样本点,记为“取出的两只袜子正好可以配成一双”,则,包含的样本点个数为2,所以.故选:B7、B【解题分析】构造,利用均值不等式即得解【题目详解】,当且仅当,即,时等号成立故选:B【题目点拨】本题考查了均值不等式在最值问题中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题8、B【解题分析】分和两种情况讨论,即可得出结果.【题目详解】当时,显然不成立.若时当时,,此时对数,解得,根据对数的图象和性质可知,要使在时恒成立,则有,如图选B.【题目点拨】本题主要考查对数函数与指数函数的应用,熟记对数函数与指数函数的性质即可,属于常考题型.9、C【解题分析】根据正弦型函数周期的求法即可得到答案.【题目详解】故选:C.10、C【解题分析】分别解集合A、B中的不等式,再求两个集合的交集【题目详解】集合,集合,所以,选择C【题目点拨】进行集合的交、并、补运算前,要搞清楚每个集合里面的元素种类,以及具体的元素,再进行运算二、填空题:本大题共6小题,每小题5分,共30分。11、0【解题分析】令x=1代入即可求出结果.【题目详解】令,则.【题目点拨】本题主要考查求函数的值,属于基础题型.12、【解题分析】由题设知,四面体ABCD的外接球也是与其同底等高的三棱柱的外接球,球心为上下底面中心连线EF的中点,所以,所以球的半径所以,外接球的表面积,所以答案应填:考点:1、空间几何体的结构特征;2、空间几何体的表面积13、【解题分析】令对数的真数为,即可求出定点的横坐标,再代入求值即可;【题目详解】解:因为函数(且),令,解得,所以,即函数恒过点;故答案为:14、【解题分析】根据图象求出函数的解析式,然后由已知构造不等式,解不等式即可得解.【题目详解】当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有或,解得,所以,所以服药一次治疗疾病有效时间为个小时,故答案为:15、①.##②.【解题分析】根据对数函数的定义域求出x的取值范围即可;结合对数复合型函数的单调性与一次函数的单调性即可得出结果.【题目详解】由题意知,,得,即函数的定义域为;又函数在定义域上单调增函数,而函数在上单调递减,所以函数为减函数,故.故答案为:;16、①.②.【解题分析】利用对勾函数的单调性直接计算函数的最大值和最小值作答.【题目详解】因函数在上单调递增,在上单调递减,当时,函数在上单调递增,在上单调递减,即有当时,,而当时,,当时,,则,所以函数的最大值为,最小值为.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)由题意列出不等式组,令,求出对称轴,若在区间上有解,则解不等式即可求得k的范围;(2)由韦达定理计算得,利用指数函数单调性解不等式,化简得,令,求出函数在区间上的值域从而求得m的取值范围.【题目详解】(1)由题意知有解,则有解,①③成立时,②显然成立,因此令,对称轴为:当时,在区间上单调递减,在区间上单调递增,因此若在区间上有解,则,解得,又,则,k得最小值为;(2)由题意知是方程的两根,则,,联立解得,解得,所以在定义域内单调递减,由可得对任意的恒成立,化简得,令,,对成立,所以在区间上单调递减,,所以【题目点拨】本题考查函数与方程,二次函数的图像与性质,考查韦达定理,求解指数型不等式,导数证明不等式,属于较难题.18、(1);20;(2)分,76.67分(3)【解题分析】(1)根据频率之和为1,可求得a的值,根据频数的计算可求得测试成绩在[80,85)的人数;(2)根据频率分布直方图可计算中位数,即可求得第50%分数位;(3)列举出所有可能的抽法,再列出第四组至少有1名老师被抽到可能情况,根据古典概型的概率公式求得答案.【小问1详解】由题意得:,解得;这100人中测试成绩在[80,85)的人数为(人);【小问2详解】平均数为:(分),设中位数为m,且,则,解得,故第50%分数位76.67分;【小问3详解】第三组频率为,第四组频率为,第五组频率为,故从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,三组人数为3人,2人和1人,记第三组抽取人为,第四组抽取的人为,第五组抽取的人为,则抽取2人的所有情况如下:共15种,其中第四组至少有1名老师被抽到的抽法有共9种,故第四组至少有1名老师被抽到的概率为.19、(1)见解析;(2)【解题分析】(1)推导出DN⊥CM,CM⊥FN,由此能证明CM⊥平面DFN.(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,利用向量法能求出点C到平面FDM的距离【题目详解】证明:(1)∵长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD因为长方形ABCD,DC=CN=2,所以四边形DCNM是正方形,∴DN⊥CM,因为平面MNFE⊥平面ABCD,FN⊥MN,MNFE∩平面ABCD=MN,所以FN⊥平面DCNM,因为CM平面DCNM,所以CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,则C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),设平面FDM的法向量=(x,y,z),则,取x=1,得=(1,0,-1),∴点C到平面FDM的距离d===【题目点拨】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题20、(Ⅰ)答案见解析;(Ⅱ)最小值,对应的x的集合为.【解题分析】(Ⅰ)由二倍角公式降幂后,用诱导公式化正弦函数,再由图象平移得结论;(Ⅱ)利用两角和的余弦公式化函数为一个角的余弦型函数,利用余弦函数的性质得最值【题目详解】解:(Ⅰ),所以要得到的图象只需要把的图象向左平移个单位长度,再将所得的图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论