




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届蚌埠市重点中学数学高一上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减2.已知点在圆外,则直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定3.已知向量且,则x值为().A.6 B.-6C.7 D.-74.命题,一元二次方程有实根,则()A.,一元二次方程没有实根B.,一元二次方程没有实根C.,一元二次方程有实根D.,一元二次方程有实根5.设则的最大值是()A.3 B.C. D.6.若,,,则a,b,c的大小关系为()A. B.C. D.7.设全集,,,则()A. B.C. D.8.设则()A. B.C. D.9.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.
4,6
B.C
D.10.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于的不等式的解集为,其中,则的最小值是___________.12.已知曲线且过定点,若且,则的最小值为_____13.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.14.的定义域为_________;若,则_____15.某高校甲、乙、丙、丁4个专业分别有150,150,400,300名学生.为了了解学生的就业倾向,用分层随机抽样的方法从这4个专业的学生中抽取40名学生进行调查,应在丁专业中抽取的学生人数为______16.一条光线从A处射到点B(0,1)后被轴反射,则反射光线所在直线的一般式方程为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线:与圆:交于,两点.(1)求的取值范围;(2)若,求.18.第四届中国国际进口博览会于2021年11月5日至10日在上海举行.本届进博会共有58个国家和3个国际组织参加国家展(国家展今年首次线上举办),来自127个国家和地区的近3000家参展商亮相企业展.更多新产品、新技术、新服务“全球首发,中国首展”专(业)精(品)尖(端)特(色)产品精华荟萃,某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x千台空调,需另投入资金R万元,且经测算,当生产10千台空调需另投入的资金R=4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完(1)求2022年企业年利润W(万元)关于年产量x(千台)的函数关系式;(2)2022年产量为多少(千台)时,企业所获年利润最大?最大年利润多少?(注:利润=销售额-成本)19.对于两个定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的.(1)若是由“基函数,”生成的,求实数的值;(2)试利用“基函数,”生成一个函数,且同时满足以下条件:①是偶函数;②的最小值为1.求的解析式.20.(1)已知是角终边上一点,求,,的值;(2)已知,求下列各式的值:①;②21.已知角α的终边经过点,且为第二象限角(1)求、、的值;(2)若,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由可知是奇函数,排除,,且,由可知错误,故选2、B【解题分析】由题意结合点与圆的位置关系考查圆心到直线的距离与圆的半径的大小关系即可确定直线与圆的位置关系.【题目详解】点在圆外,,圆心到直线距离,直线与圆相交.故选B.【题目点拨】本题主要考查点与圆的位置关系,直线与圆的位置关系等知识,意在考查学生的转化能力和计算求解能力.3、B【解题分析】利用向量垂直的坐标表示可以求解.【题目详解】因为,,所以,即;故选:B.【题目点拨】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.4、B【解题分析】根据全称命题的否定为特称命题可得出.【题目详解】因为全称命题的否定为特称命题,所以,一元二次方程没有实根.故选:B.5、D【解题分析】利用基本不等式求解.【题目详解】因为所以,当且仅当,即时,等号成立,故选:D6、A【解题分析】根据指数函数和对数函数的单调性进行判断即可.【题目详解】∵,∴,∴,,,∴.故选:A7、B【解题分析】先求出集合B的补集,再求【题目详解】因为,,所以,因为,所以,故选:B8、A【解题分析】利用中间量隔开三个值即可.【题目详解】∵,∴,又,∴,故选:A【题目点拨】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.9、B【解题分析】利用交、并、补集运算,对答案项逐一验证即可【题目详解】,A错误={2,3,4,5,6,7}=,B正确
{3,4,5,7},C错误,,D错误故选:B【题目点拨】本题考查集合的混合运算,较简单10、D【解题分析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【题目详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【题目详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:12、【解题分析】由指数函数图象所过定点求出,利用“1”的代换凑配出定值后用基本不等式得出最小值.【题目详解】令,,则,∴定点为,,,当且仅当时等号成立,即时取得最小值.故答案为:.【题目点拨】本题考查指数函数的图象与性质,考查用基本不等式求最值.“1”的代换是解题关键.13、【解题分析】根据条件得到,解出,进而得到.【题目详解】因为,所以且,所以,解得:,则,,所以.故答案为:14、①.;②.3.【解题分析】空一:根据正切型函数的定义域进行求解即可;空二:根据两角和的正切公式进行求解即可.【题目详解】空一:由函数解析式可知:,所以该函数的定义域为:;空二:因为,所以.故答案为:;15、12【解题分析】利用分层抽样的性质直接求解详解】由题意应从丁专业抽取的学生人数为:故答案为:1216、【解题分析】根据反射光线的性质,确定反射光线上的两个点的坐标,最后确定直线的一般式方程.【题目详解】因为一条光线从A处射到点B(0,1)后被轴反射,所以点A关于直线对称点为,根据对称性可知,反射光线所在直线过点,又因为反射光线所在直线又过点,所以反射光线所在直线斜率为,所以反射光线所在直线方程为,化成一般式得:,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解题分析】(1)将圆的一般方程化为标准方程,根据两个交点,结合圆心到直线的距离即可求得的取值范围.(2)根据垂径定理及,结合点到直线距离公式,即可得关于的方程,解方程即可求得的值.【题目详解】(1)由已知可得圆的标准方程为,圆心,半径,则到的距离,解得,即的取值范围为.(2)因为,解得所以由圆心到直线距离公式可得.解得或.【题目点拨】本题考查了直线与圆的位置关系判断,直线与圆相交时的弦长关系及垂径定理应用,属于基础题.18、(1)(2)当2022年产量为100千台时,企业的利润最大,最大利润为8990万元【解题分析】(1)分段讨论即可;(2)分段求最值,再比较即可【小问1详解】由题意知,当x=10时,所以a=300当时,当时,所以【小问2详解】当0<x<40时,,所以,当x=30时,W有最大值,最大值为8740当时,当且仅当即x=100时,W有最大值,最大值为8990因为8740<8990,所以当2022年产量为100千台时,企业的利润最大,最大利润为8990万元.19、(1);(2)【解题分析】⑴由已知得,求解即可求得实数的值;⑵设,则,继而证得是偶函数,可得与的关系,得到函数解析式,设,则由,即可求解的最小值为解析:(1)由已知得,即,得,所以.(2)设,则.由,得,整理得,即,即对任意恒成立,所以.所以.设,令,则,改写为方程,则由,且,得,检验时,满足,所以,且当时取到“=”.所以,又最小值为1,所以,且,此时,所以.点睛:本题考查了学生对新定义的理解,方程的思想,对数的运算性质,不等式的性质以及函数的最值求法.考查了函数的最值及其几何意义,函数解析式的求解及其常用方法,本题涉及的函数的性质较多,综合性抽象性很强,做题的时候要做到每一步变化严谨20、(1);;;(2)①;②【解题分析】(1)利用三角函数的定义即可求解.(2)求出,再利用齐次式即可求解.【题目详解】(1)是角终边上一点,则,,.(2)由,则,①.②21、(1);;(2).【解题分析】(1)由三角函数的定义和为第二象限角,求得,即点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学反思如何影响学生学习角色转变试题及答案
- 统计物理基本定律试题及答案
- 无人测绘考试试题及答案
- 音乐流媒体平台用户付费行为与市场细分研究报告
- 安全工程师在建筑施工计划中扮演的角色与试题及答案
- 2025特岗教师招聘教学能力测试试题及答案
- 2025年智慧校园安全教育与培训体系建设研究报告
- 家具设计的生态设计原则与实践案例研究试题及答案
- 深入解析幼儿园数学试题及答案
- 物业秩序考试试题及答案
- 新北师大版八年级下册数学教案+教学计划大全
- 量子通信平台下的宇宙观测-全面剖析
- 2025-2030中国生物质能发电行业市场现状供需分析及投资评估规划分析研究报告
- 固体废物运输合同协议
- 2025年全国防灾减灾日班会 课件
- 普法宣讲杨立新-民法典-人格权 编【高清】
- 2023中国电子科技集团有限公司在招企业校招+社招笔试参考题库附带答案详解
- 2025年上半年浙江省杭州市交通运输局所属事业单位统一招聘20人易考易错模拟试题(共500题)试卷后附参考答案
- 10.2 保护人身权(课件)-2024-2025学年七年级道德与法治下册
- 福彩考试题库目录及答案
- SL631水利水电工程单元工程施工质量验收标准第1部分:土石方工程
评论
0/150
提交评论