版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市首都师范大附属中学2024届八年级数学第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A. B. C. D.2.如图,已知直线AB:y=x+分别交x轴、y轴于点B、A两点,C(3,0),D、E分别为线段AO和线段AC上一动点,BE交y轴于点H,且AD=CE,当BD+BE的值最小时,则H点的坐标为()A.(0,4) B.(0,5) C.(0,) D.(0,)3.已知xm=6,xn=3,则x2m―n的值为(
)A.9 B. C.12 D.4.我国古代数学名著《孙子算经》记载一道题,大意为100个和尚吃了100个馒头,已知个大和尚吃个馒头,个小和尚吃个馒头,问有几个大和尚,几个小和尚?若设有个大和尚,个小和尚,那么可列方程组为()A. B. C. D.5.如图,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个6.如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()A.10° B.20° C.30° D.50°7.下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个8.如图,在△ABC中,AD⊥BC,添加下列条件后,还不能使△ABD≌△ACD的是()A. B. C. D.9.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为().A. B.C. D.10.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C.D二、填空题(每小题3分,共24分)11.化简:的结果是_______.12.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.13.若,则分式的值为__________.14.若关于x的分式方程=1的解是非负数,则m的取值范围是_____.15.如图,在象棋盘上建立平面直角坐标系.使“马”位于点(2,1),“炮”位于点(﹣1,1),写出“兵”所在位置的坐标是_____.16.如图,□ABCD中,∠A=120°,则∠1=________°.17.能使分式的值为零的x的值是______.18.如图,已知,,按如下步骤作图:(1)分别以、为圆心,以大于的长为半径在两边作弧,交于两点、;(2)经过、作直线,分别交、于点、;(3)过点作交于点,连接、.则下列结论:①、垂直平分;②;③平分;④四边形是菱形;⑤四边形是菱形.其中一定正确的是______(填序号).三、解答题(共66分)19.(10分)(阅读理解)利用完全平方公式,可以将多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:(问题解决)根据以上材料,解答下列问题:(1)用多项式的配方法将多项式化成的形式;(2)用多项式的配方法及平方差公式对多项式进行分解因式;(3)求证:不论,取任何实数,多项式的值总为正数.20.(6分)如图,△ABC中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).21.(6分)计算或化简:(1)(2x-3y2)-2÷(x-2y)3;(2);(3).22.(8分)织金县某中学300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这300名学生共植树多少棵?23.(8分)科技创新加速中国高铁技术发展,某建筑集团承担一座高架桥的铺设任务,在合同期内高效完成了任务,这是记者与该集团工程师的一段对话:记者:你们是用9天完成4800米长的高架桥铺设任务的?工程师:是的,我们铺设600米后,采用新的铺设技术,这样每天铺设长度是原来的2倍.通过这段对话,请你求出该建筑集团原来每天铺设高架桥的长度.24.(8分)解不等式组,并把解集在数轴上表示出来.25.(10分)如图,把长方形纸片放入平面直角坐标系中,使分别落在轴的的正半轴上,连接,且,.(1)求点的坐标;(2)将纸片折叠,使点与点重合(折痕为),求折叠后纸片重叠部分的面积;(3)求所在直线的函数表达式,并求出对角线与折痕交点的坐标.26.(10分)阅读以下内容解答下列问题.七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题:(1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是.(2)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解,这种因式分解的方法叫“试根法”.①求式子中m、n的值;②用“试根法”分解多项式x3+5x2+8x+1.
参考答案一、选择题(每小题3分,共30分)1、D【分析】利用角平分线和平行的性质即可求出.【题目详解】∵AB∥CD∴∠ABC=∠1=50°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=100°,∴∠BDC=180°-∠ABD=80°,∴∠2=∠BDC=80°.故选D.【题目点拨】本题考查的是平行,熟练掌握平行的性质和角平分线的性质是解题的关键.2、A【分析】作EF⊥BC于F,设AD=EC=x.利用勾股定理可得BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到G(,3),K(,)的距离之和最小.【题目详解】解:由题意A(0,),B(-3,0),C(3,0),∴AB=AC=8,作EF⊥BC于F,设AD=EC=x.∵EF∥AO,∴,∴EF=,CF=,∵OH∥EF,∴,∴OH=,∴BD+BE=+=+,要求BD+BE的最小值,相当于在x轴上找一点M(x,0),使得点M到K(,3),G(,)的距离之和最小.设G关于x轴的对称点G′(,),直线G′K的解析式为y=kx+b,则有,解得k=,b=,∴直线G′K的解析式为y=x,当y=0时,x=,∴当x=时,MG+MK的值最小,此时OH===4,∴当BD+BE的值最小时,则H点的坐标为(0,4),故选A.【题目点拨】本题考查一次函数图象上的点的特征、轴对称最短问题、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.3、C【解题分析】试题解析:试题解析:∵xm=6,xn=3,∴x2m-n==36÷3=12.故选C.4、C【分析】设有m个大和尚,n个小和尚,题中有2个等量关系:1个和尚吃了1个馒头,大和尚吃的馒头+小和尚吃的馒头=1.【题目详解】解:设有m个大和尚,n个小和尚,根据数量关系式可得:,故选C.【题目点拨】本题考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.5、C【分析】①在AE取点F,使EF=BE.利用已知条件AB=AD+2BE,可得AD=AF,进而证出2AE=AB+AD;
②在AB上取点F,使BE=EF,连接CF.先由SAS证明△ACD≌△ACF,得出∠ADC=∠AFC;再根据线段垂直平分线、等腰三角形的性质得出∠CFB=∠B;然后由邻补角定义及四边形的内角和定理得出∠DAB+∠DCB=180°;
③根据全等三角形的对应边相等得出CD=CF,根据线段垂直平分线的性质得出CF=CB,从而CD=CB;
④由于△CEF≌△CEB,△ACD≌△ACF,根据全等三角形的面积相等易证S△ACE-S△BCE=S△ADC.【题目详解】解:①在AE取点F,使EF=BE,
∵AB=AD+2BE=AF+EF+BE,EF=BE,
∴AB=AD+2BE=AF+2BE,
∴AD=AF,
∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,
∴AE=(AB+AD),故①正确;
②在AB上取点F,使BE=EF,连接CF.
在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,
∴△ACD≌△ACF,
∴∠ADC=∠AFC.
∵CE垂直平分BF,
∴CF=CB,
∴∠CFB=∠B.
又∵∠AFC+∠CFB=180°,
∴∠ADC+∠B=180°,
∴∠DAB+∠DCB=360-(∠ADC+∠B)=180°,故②正确;
③由②知,△ACD≌△ACF,∴CD=CF,
又∵CF=CB,
∴CD=CB,故③正确;
④易证△CEF≌△CEB,
所以S△ACE-S△BCE=S△ACE-S△FCE=S△ACF,
又∵△ACD≌△ACF,
∴S△ACF=S△ADC,
∴S△ACE-S△BCE=S△ADC,故④错误;
即正确的有3个,
故选C.【题目点拨】本题考查了角平分线性质,全等三角形的性质和判定,等腰三角形的性质,四边形的内角和定理,邻补角定义等知识点的应用,正确作辅助线是解此题的关键,综合性比较强,难度适中.6、B【解题分析】试题解析:如图:∵直线AB∥CD,∠AHG=50°,∴∠AKG=∠XKG=50°.∵∠CKG是△KMG的外角,∴∠KMG=∠CKG-∠G=50°-30°=20°.∵∠KMG与∠FMD是对顶角,∴∠FMD=∠KMG=20°.故选B.考点:平行线的性质.7、C【分析】轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.【题目详解】前三个均是轴对称图形,第四个不是轴对称图形,故选C.【题目点拨】本题考查的是轴对称图形,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.8、D【分析】根据全等三角形的判定定理解答即可.【题目详解】∵AD⊥BC∴∠ADC=∠ADB=90°若添加AB=AC,又AD=AD则可利用“HL”判定全等,故A正确;若添加BD=CD,又AD=AD则可利用“SAS”判定全等,故B正确;若添加∠B=∠C,又AD=AD则可利用“AAS”判定全等,故C正确;若添加AD=BD,无法证明两个三角形全等,故D错误.故选:D【题目点拨】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法“SSS”、“AAS”、“SAS”、“ASA”“HL”是关键.9、A【解题分析】设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,.故选A.10、D【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【题目详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.二、填空题(每小题3分,共24分)11、【分析】根据分式混合运算的法则计算即可【题目详解】解:故答案为:【题目点拨】本题考查了分式混合运算,熟练掌握分式混合运算的法则是解题的关键12、36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【题目详解】,是等腰三角形,度.【题目点拨】本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).13、1【分析】首先将已知变形进而得出x+y=2xy,再代入原式求出答案.【题目详解】∵∴x+y=2xy∴====1故答案为:1.【题目点拨】此题主要考查了分式的值,正确将已知变形进而化简是解题关键.14、m≥﹣4且m≠﹣1【解题分析】分式方程去分母转化为整式方程,由分式的解是非负数确定出m的范围即可.【题目详解】去分母得:m+1=x﹣1,解得:x=m+4,由分式方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m≥﹣4且m≠﹣1.故答案为:m≥﹣4且m≠﹣1【题目点拨】本题考查分式方程的解,解一元一次不等式,解决此题时一定要注意解分式方程时分式的分母不能为0.15、(﹣2,2)【分析】采用回推法,根据“马”的位置确定x轴和y轴,再确定“兵”在平面直角坐标系中的位置【题目详解】解:“马”的位置向下平移1个单位是x轴,再向左平移2个单位是y轴,得“兵”所在位置的坐标(﹣2,2).故答案为(﹣2,2).【题目点拨】本题考查了坐标确定位置,利用“马”的坐标平移得出平面直角坐标系是解题关键.灵活利用回推法,16、60【解题分析】由▱ABCD中,∠A=120°,根据平行四边形的对角相等,可求得∠BCD的度数,继而求得答案.【题目详解】解:∵四边形ABCD是平行四边形,
∴∠BCD=∠A=120°,
∴∠1=180°-∠BCD=60°.故答案为60°.【题目点拨】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.17、1【分析】根据分式值为零,分子为零且分母不为零求解.【题目详解】解:∵分式的值为0,∴|x|-1=0,x+1≠0解得x=1.故答案为:1.【题目点拨】本题考查分式的值为零的条件.18、①②④【分析】根据题意可知:MN是AC的垂直平分线,①正确;可得AD=CD,AE=CE,然后由CE∥AB,可证得CD∥AE,则四边形ADCE是平行四边形,然后得出,②正确;继而证得四边形ADCE是菱形,④正确.【题目详解】解:∵分别以A、C为圆心,以大于的长为半径在AC两边作弧,交于两点M、N,
∴MN是AC的垂直平分线,①正确;
∴AD=CD,AE=CE,
∴∠CAD=∠ACD,∠CAE=∠ACE,
∵CE∥AB,
∴∠CAD=∠ACE,
∴∠ACD=∠CAE,
∴CD∥AE,
∴四边形ADCE是平行四边形,∴,②正确;
∴四边形ADCE是菱形,④正确;∴,,∵,∴,又∵∴四边形是平行四边形,若四边形是菱形,即,若平分,即,题中未限定这两个条件,∴③⑤不一定正确,故答案为:①②④.【题目点拨】本题考查了作图−复杂作图,线段垂直平分线的性质,菱形的判定与性质,平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用.三、解答题(共66分)19、(1),见解析;(2),见解析;(3)见解析【分析】(1)根据题中给出的例题,利用完全平方公式进行配方即可;(2)根据题中给出的例题,利用完全平方公式进行配方后,再利用平方差公式进行因式分解即可;(3)利用配方法将多项式化成后,再结合平方的非负性即可求证.【题目详解】解:(1)(2)由(1)得.(3),,不论,取任何实数,多项式的值总为正数.【题目点拨】本题考查了完全平方公式和公式法因式分解,解题的关键是读懂题中给出的例题,熟知完全平方公式和因式分解的方法.20、(1)过程见解析;(2)MN=NC﹣BM.【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN=60°,∠BDC=120°,可证∠MDN=∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.
(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.【题目详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵,∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠CDE∵∠MDN=60°,∠BDC=120°,∴∠CDE+∠NDC=∠BDM+∠NDC=120°-60°=60°,即:∠MDN=∠NDE=60°,在△DMN与△DEN中,∵,∴△DMN≌△DEN(SAS),∴MN=NE=CE+NC=BM+NC.(2)如图②中,结论:MN=NC﹣BM.理由:在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵,∴△BMD≌△CED(SAS),∴DM=DE,∠BDM=∠CDE∵∠MDN=60°,∠BDC=120°,∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,即:∠MDN=∠NDE=60°,在△MDN和△EDN中∵,∴△MDN≌△EDN(SAS),∴MN=NE=NC﹣CE=NC﹣BM.【题目点拨】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、(1);(2);(3)【分析】(1)先利用负整数指数幂和整数指数幂的运算法则运算,再利用单项式乘除单项式法则计算即可得到结果;(2)通分并利用同分母分式的减法法则计算,再利用平方差公式展开合并同类项即可;(3)将括号中两项通分并利用同分母分式的减法法则计算,化除法为乘法运算,约分得到最简结果即可.【题目详解】(1)(2x-3y2)-2÷(x-2y)3;(2);(3).【题目点拨】本题主要考查负整数指数幂的运算和分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.22、(1)20(人),2(人);(2)众数是1,中位数是1.(3)估计这300名学生共植树1190棵.【解题分析】(1)根据B组人数,求出总人数即可解决问题.(2)根据众数,中位数的定义即可解决问题.(3)利用样本估计总体的思想解决问题即可.【题目详解】解:(1)总人数=8÷40%=20(人),D类人数=20×10%=2(人).(2)众数是1,中位数是1.(3)(棵),1.3×300=1190(棵).答:估计这300名学生共植树1190棵.【题目点拨】本题考查条形统计图,扇形统计图,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、该建筑集团原来每天铺设高架桥300米.【分析】设该建筑集团原来每天铺设高架桥x米,则采用新的铺设技术后每天铺设高架桥2x米,根据工作时间=工作总量÷工作效率,即可得出关于x的分式方程,解之经检验后即可得出结论.【题目详解】解:设该建筑集团原来每天铺设高架桥x米,则采用新的铺设技术后每天铺设高架桥2x米,依题意,得:,解得:x=300,经检验,x=300是原方程的解,且符合题意.答:该建筑集团原来每天铺设高架桥300米.【题目点拨】本题考查分式方程的应用,关键在于理解题意找到等量关系.24、-1≤x﹤,数轴表示见解析【分析】先分别解出每个不等式的解集,再把各个解集表示在数轴上,取公共部分即为不等式组的解集.【题目详解】解:对于不等式组由①得:x≥-1,由②得:x﹤,所以原不等式组的解是:-1≤x﹤.【题目点拨】本题考查了解一元一次不等式组、数轴的应用,能正确解出不等式的解集且表示在数轴上是解答的关键.25、(1)A(8,0),C(0,4);(2)10;(3)y=2x-6,(4,2)【分析】(1)设OC=a,则OA=2a,在直角△AOC中,利用勾股定理即可求得a的值,则A和C的坐标即可求得;(2)重叠部分是△CEF,利用勾股定理求得AE的长,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中央应急管理部所属单位2025年度第一批次招聘19人笔试历年参考题库附带答案详解
- 2025贵州安顺关岭自治县人力资源和社会保障局招聘公益性岗位人员1人备考题库及答案详解1套
- 上海上海戏剧学院附属戏曲学校2025年招聘2人笔试历年参考题库附带答案详解
- 2025浙江丽水市自然资源发展有限公司社会招聘5人备考题库及完整答案详解
- 2025河北张家口市康保县二人台艺术团第二次招聘专业演职人员5人备考题库及一套参考答案详解
- 2026四川广安武胜县嘉陵水利集团有限公司招聘工作人员1人备考题库有答案详解
- 2026年商丘梁园区消防救援大队招录政府专职消防员10名备考题库及1套参考答案详解
- 2025河南医学高等专科学校招聘高层次人才2人备考题库及答案详解(新)
- 2026河南洛阳牡丹妇产医院招聘20人备考题库及一套完整答案详解
- 变动成本法在企业管理中的应用教学课件
- 2026年陕西省森林资源管理局局属企业公开招聘工作人员备考题库带答案详解
- 规范园区环保工作制度
- 2026广东深圳市龙岗中心医院招聘聘员124人笔试备考试题及答案解析
- 2025年同工同酬临夏市笔试及答案
- 2026年孝昌县供水有限公司公开招聘正式员工备考题库及答案详解(考点梳理)
- 2026届新高考语文热点冲刺复习 赏析小说语言-理解重要语句含意
- 集资入股协议书范本
- 天津市部分区2024-2025学年九年级上学期期末练习道德与法治试卷(含答案)
- 统编版六年级语文上册:阅读理解知识点+答题技巧+练习题(含答案)
- JJG 521-2024 环境监测用X、γ辐射空气比释动能率仪检定规程
- 采购部管理评审总结
评论
0/150
提交评论