版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市建湖县2024届八上数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.△ABC中,AB=3,AC=2,BC=a,下列数轴中表示的a的取值范围,正确的是()A. B.C. D.2.三角形的三边为a、b、c,则下列条件不能判断它是直角三角形的是()A.a:b:c=8:16:17 B. C. D.∠A=∠B+∠C3.已知如图,平分,于点,点是射线上的一个动点,若,,则的最小值是()A.2 B.3 C.4 D.不能确定4.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.75.如图,在平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,连接.下列结论中:①;②是等边角形:③;④;⑤.其中正确的是()A.②③⑤ B.①④⑤ C.①②③ D.①②④6.华为手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为().A. B. C. D.7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确8.如图,中,,于,平分,且于,与相交于点,是边的中点,连接与相交于点,下列结论正确的有()个①;②;③;④是等腰三角形;⑤.A.个 B.个 C.个 D.个9.下列各数是无理数的是()A.3.14 B.-π C. D.10.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等 B.不相等 C.互余或相等 D.互补或相等11.如图,点D、E分别在AC、AB上,已知AB=AC,添加下列条件,不能说明△ABD≌△ACE的是()A.∠B=∠C B.AD=AE C.∠BDC=∠CEB D.BD=CE12.下列能用平方差公式计算的是().A. B.C. D.二、填空题(每题4分,共24分)13.若一个正方形的面积为,则此正方形的周长为___________.14.如图,在中,为的中点,点为上一点,,、交于点,若,则的面积为______.15.如图,中,,,DE是BC边上的垂直平分线,的周长为14cm,则的面积是______.16.如图,在四边形中,已知,平分,,那么__________.17.若是一个完全平方式,则k=___________.18.如图,已知中,,AD平分,如果CD=1,且的周长比的周长大2,那么BD=____.三、解答题(共78分)19.(8分)尺规作图及探究:已知:线段AB=a.(1)完成尺规作图:点P在线段AB所在直线上方,PA=PB,且点P到AB的距离等于,连接PA,PB,在线段AB上找到一点Q使得QB=PB,连接PQ,并直接回答∠PQB的度数;(2)若将(1)中的条件“点P到AB的距离等于”替换为“PB取得最大值”,其余所有条件都不变,此时点P的位置记为,点Q的位置记为,连接,并直接回答∠的度数.20.(8分)(1)计算:2a2•a4﹣(2a2)3+7a6(2)因式分解:3x3﹣12x2+12x21.(8分)如图1,为轴负半轴上一点,为轴正半轴上一点,点坐标为,点坐标为且.(1)求两点的坐标;(2)求;(3)如图2,若点坐标为点坐标为,点为线段上一点,的延长线交线段于点,若,求出点坐标.(4)如图3,若,点在轴正半轴上任意运动,的平分线交的延长线于点,在点的运动过程中,的值是否发生变化,若不变化,求出比值;若变化请说明理由.22.(10分)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)若农户王大伯一次购买该种子花费了420元,求他购买种子的数量.23.(10分)如图,在中,和的平分线交于点,过点作,交于,交于,若,,试求的值.24.(10分)如图,过点A(1,3)的一次函数y=kx+6(k≠0)的图象分别与x轴,y轴相交于B,C两点.(1)求k的值;(2)直线l与y轴相交于点D(0,2),与线段BC相交于点E.(i)若直线l把△BOC分成面积比为1:2的两部分,求直线l的函数表达式;(ⅱ)连接AD,若△ADE是以AE为腰的等腰三角形,求满足条件的点E的坐标.25.(12分)某地教育局为了解该地八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)___________,并写出该扇形所对圆心角的度数为___________,请补全条形统计图.(2)在这次抽样调查中,众数为___________,中位数为___________.26.如图,在△ABC中,AB=4cm,AC=6cm.(1)作图:作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD,求△ABD的周长.
参考答案一、选择题(每题4分,共48分)1、A【分析】首先根据三角形的三边关系确定a的取值范围,然后在数轴上表示即可.【题目详解】解:∵△ABC中,AB=3,AC=2,BC=a,∴1<a<5,∴A符合,故选:A.【题目点拨】本题主要考查了三角形三边关系的知识点,准确判断出第三边的取值范围,然后在数轴上进行表示,注意在数轴上表示的点为空心即可.2、A【分析】根据勾股定理的逆定理和三角形的内角和定理进行分析,从而得到答案.【题目详解】解:A、∵82+162≠172,故△ABC不是直角三角形;B、∵,∴,故△ABC为直角三角形;C、∵a2=(b+c)(b-c),∴b2-c2=a2,故△ABC为直角三角形;D、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,故△ABC为直角三角形;故选:A【题目点拨】本题考查勾股定理的逆定理的应用,以及三角形内角和定理,判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.3、A【分析】根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.【题目详解】解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,
∵OP平分∠MON,PA⊥ON,PQ⊥OM,
∴PA=PQ,
∵∠AOP=∠MON=30°,
∴PA=2,
∴PQ=2.
故选:A.【题目点拨】此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有线段中,垂线段最短,找出满足题意的点Q的位置是解题的关键.4、C【解题分析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.5、D【分析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),得出,④正确;由△AEC与△DCE同底等高,得出,进而得出.⑤不正确.【题目详解】解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形,②正确;
∴∠ABE=∠EAD=60°,
∵AB=AE,BC=AD,
∴△ABC≌△EAD(SAS),①正确;
∵△CDF与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴,④正确;
又∵△AEC与△DEC同底等高,
∴,
∴,⑤不正确.
若AD与AF相等,即∠AFD=∠ADF=∠DEC,题中未限定这一条件,
∴③不一定正确;
故正确的为:①②④.故选:D.【题目点拨】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定.此题比较复杂,注意将每个问题仔细分析.6、D【分析】由科学记数法知;【题目详解】解:;故选D.【题目点拨】本题考查科学记数法;熟练掌握科学记数法中与的意义是解题的关键.7、A【分析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【题目详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【题目点拨】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.8、B【分析】只要证明△BDF≌△CDA,△BAC是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③④正确,作GM⊥BD于M,只要证明GH<DG即可判断⑤错误.【题目详解】∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中,∴△BDF≌△CDA(AAS),∴BF=AC,故①正确.∵∠ABE=∠EBC=22.5°,BE⊥AC,∴∠A=∠BCA=67.5°,故③正确,∴BA=BC,∵BE⊥AC,∴AE=EC=AC=BF,故②正确,∵BE平分∠ABC,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF,故④正确.作GM⊥AB于M.∵∠GBM=∠GBH,GH⊥BC,∴GH=GM<DG,∴S△DGB>S△GHB,∵S△ABE=S△BCE,∴S四边形ADGE<S四边形GHCE.故⑤错误,∴①②③④正确,故选:B.【题目点拨】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.9、B【分析】根据无理数的定义判断.【题目详解】A、3.14是有限小数,是有理数,故不符合题意;B、-π是无限不循环小数,是无理数,故符合题意;C、是无限循环小数,是有理数,故不符合题意;D、=10,是有理数,故不符合题意;故选B.【题目点拨】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.10、D【分析】作出图形,然后利用“HL”证明Rt△ABG和Rt△DEH全等,根据全等三角形对应角相等可得∠B=∠DEH,再分∠E是锐角和钝角两种情况讨论求解.【题目详解】如图,△ABC和△DEF中,AB=DE,BC=EF,AG、DH分别是△ABC和△DEF的高,且AG=DH,在Rt△ABG和Rt△DEH中,,∴Rt△ABG≌Rt△DEH(HL),∴∠B=∠DEH,∴若∠E是锐角,则∠B=∠DEF,若∠E是钝角,则∠B+∠DEF=∠DEH+∠DEF=180°,故这两个三角形的第三边所对的角的关系是:互补或相等.故选D.11、D【分析】要使△ABD≌△ACE,则需对应边相等,夹角相等,可用两边夹一角,也可用两角夹一边判定全等.【题目详解】已知条件中AB=AC,∠A为公共角,A中∠B=∠C,满足两角夹一边,可判定其全等,A正确;B中AD=AE两边夹一角,也能判定全等,B也正确;C中∠BDC=∠CEB,即∠ADB=∠AEC,又∠A为公共角,∴∠B=∠C,所以可得三角形全等,C对;D中两边及一角,但角并不是夹角,不能判定其全等,D错.故选D.【题目点拨】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法,是正确解题的前提;做题时要按判定全等的方法逐个验证.12、B【分析】根据平方差公式的特点即可求解.【题目详解】A.=,不符合题意;B.=,符合题意;C.=,不能使用平方差公式,故错误;D.不能使用平方差公式,故错误;故选B.【题目点拨】此题主要考查平方差公式,解题的关键是熟知平方差公式适用的特点.二、填空题(每题4分,共24分)13、【分析】由正方形的面积是边长的平方,把分解因式得边长,从而可得答案.【题目详解】解:正方形的边长是:正方形的周长是:故答案为:【题目点拨】本题考查的是因式分解,掌握利用完全平方式分解因式是解题关键.14、1【分析】根据E为AC的中点可知,S△ABE=S△ABC,再由BD:CD=2:3可知,S△ABD=S△ABC,进而可得出结论.【题目详解】解:∵点E为AC的中点,
∴S△ABE=S△ABC.
∵BD:CD=2:3,
∴S△ABD=S△ABC,
∵S△AOE-S△BOD=1,
∴S△ABE-S△ABD=S△ABC-S△ABC=1,解得S△ABC=1.
故答案为:1.【题目点拨】本题考查的是三角形的面积,熟知三角形的中线将三角形分为面积相等的两部分是解答此题的关键.15、1【解题分析】根据线段垂直平分线性质得出BD=DC,求出AB+AC=14cm,求出AB,代入×AB×AC求出即可.【题目详解】解:∵DE是BC边上的垂直平分线,∴BD=DC,∵△ABD的周长为14cm,∴BD+AD+AB=14cm,∴AB+AD+CD=14cm,∴AB+AC=14cm,∵AC=8cm,∴AB=6cm,∴△ABC的面积是AB×AC=×6×8=1(cm2),故答案为:1.【题目点拨】本题考查了三角形的面积和线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.16、2【分析】根据平行线的性质和等腰三角形的判定和性质定理即可得到结论.【题目详解】,,平分,,,.故答案为:.【题目点拨】本题考查了等腰三角形的判定和性质,平行线的性质,熟练掌握等腰三角形的判定定理是解题的关键.17、±1【分析】根据平方项可知是x和4的完全平方式,再根据完全平方公式的乘积二倍项列式求解即可.【题目详解】解:∵x2+kx+16是一个完全平方式,∴kx=±2×4•x,解得k=±1.故答案为:±1.【题目点拨】本题考查了完全平方公式,根据平方项确定出这两个数是求解的关键.18、【分析】过点D作DM⊥AB于点M,根据角平分线的性质可得CD=MD,进而可用HL证明Rt△ACD≌△AMD,可得AC=AM,由的周长比的周长大2可变形得到BM+BD=3,再设BD=x,则BM=3-x,然后在Rt△BDM中根据勾股定理可得关于x的方程,解方程即可求出x,从而可得答案.【题目详解】解:过点D作DM⊥AB于点M,则,∵AD平分,∴CD=MD,又∵AD=AD,∴Rt△ACD≌△AMD(HL),∴AC=AM,∵的周长比的周长大2,∴(AB+AD+BD)-(AC+AD+CD)=2,∴AB+BD-AC-1=2,∴AM+BM+BD-AC=3,∴BM+BD=3,设BD=x,则BM=3-x,在Rt△BDM中,由勾股定理,得,即,解得:,∴BD=.故答案为:.【题目点拨】本题考查了角平分线的性质、全等三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.三、解答题(共78分)19、(1)见解析,67.5;(2)60【分析】(1)作线段AB的垂直平分线DE,D为垂足,在射线DE上截取DP=,连接PA,PB即可解决问题.(2)作等边三角形P′AB即可解决问题.【题目详解】解:(1)作图见图1.如图,点P即为所求.因为:点P到AB的距离等于,PA=PB所以:为等腰直角三角形,∠PBA=15°∵BP=BQ,,∴∠PQB=∠BPQ=67.5°.(2)作图见图1,当P′B取得最大值时,△ABP′是等边三角形,所以是等边三角形,∴=60°.【题目点拨】本题考查作图-复杂作图,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20、(1)a6;(1)3x(x﹣1)1.【分析】(1)根据单项式乘单项式的运算法则、合并同类项法则计算;(1)利用提公因式法和完全平方公式因式分解.【题目详解】(1)原式=1a6﹣8a6+7a6=a6;(1)原式=3x(x1﹣4x+4)=3x(x﹣1)1.【题目点拨】本题考查的是单项式乘单项式、多项式的因式分解,掌握单项式乘单项式的运算法则、提公因式法和完全平方公式因式分解的一般步骤是解题的关键.21、(1)C(0,-2),D(-3,-2);(2)3;(3)Q(,);(4)值不变,且为【分析】(1)根据中绝对值和算术平方根的非负性可求得a和b的值,从而得到C和D的坐标;(2)求出CD的长度,再根据三角形的面积公式列式计算即可;(3)根据可得△ABQ的面积等于△BOC的面积,求出△OBC的面积,再根据AB的长度可求得点Q的纵坐标,然后求出直线AC的表达式,代入点Q纵坐标即可求出点Q的横坐标;(4)在△AOE和△BFC中,利用三角形内角和定理列式整理表示出∠ABC,然后相比即可得解.【题目详解】解:(1)∵,∴a+2=0,b+3=0,∴a=-2,b=-3,∴C(0,-2),D(-3,-2);(2)∵C(0,-2),D(-3,-2),∴CD=3,且CD∥x轴,∴=×3×2=3;(3)∵,△OBP为公共部分,∴S△ABQ=S△BOC,∵B(2,0),C(0,-2)∴S△BOC==2=S△ABQ,∵A(-3,0),∴AB=5,S△ABQ==2,∴,设直线AC的表达式为y=kx+b,将A,C坐标代入,,解得:,∴直线AC的表达式为:,令y=,解得x=,∴点Q的坐标为(,);(4)在△ACE中,设∠ADC=∠DAC=α,∠ACE=β,∠E=∠DAC-∠ACE=α-β,∵CE平分∠ACB,∴∠BCE=∠ACE=β,在△AFE和△BFC中,∠E+∠EAF+∠AFE=180°,∠ABC+∠BCF+∠BFC=180°,∵CD∥x轴,∴∠EAF=∠ADC=α,又∵∠AFE=∠BFC,∴∠E+∠EAF=∠ABC+∠BCF,即α-β+α=∠ABC+β,∴∠ABC=2(α-β),∴==,为定值.【题目点拨】本题考查了坐标与图形的性质,三角形角平分线,三角形的面积,三角形内角和定理,待定系数法求一次函数解析式,属于综合体,熟记性质并准确识图是解题的关键.22、(1)①当0≤x≤5时,y=20x;②当x>5时,y=16x+20;(2)1千克【分析】(1)分情况求解:①购买量不超5千克时,付款金额=20×购买量;②购买量超过5千克时,付款金额=20×5+20×0.8×(购买量-5);(2)由于花费的钱数超过5×20=100元,所以需要把y=420代入(1)题的第二个关系式,据此解答即可.【题目详解】解:(1)根据题意,得:①当0≤x≤5时,y=20x;②当x>5时,y=20×0.8(x﹣5)+20×5=16x+20;(2)把y=420代入y=16x+20得,16x+20=420,解得:x=1.∴他购买种子的数量是1千克.【题目点拨】本题考查了一次函数的应用,属于常见题型,正确理解题意、熟练掌握一次函数的基本知识是解题关键.23、1【分析】根据角的平分线性质和平行线的性质来证明△EBO,△CFO是等腰三角形,BE=OE=3,OF=FC=1.【题目详解】∵平分,∴平分,∴又,∴,∴,∴∵,∴,∴【题目点拨】本题考查了角的平分线的性质和平行线的性质.24、(1)-3;(2)(i)y=±x+2;(ⅱ)点E的坐标为:(,)或(,).【分析】(1)将点A的坐标代入一次函数y=kx+6中,即可解得k的值;(2)(i)先求出△BCO的面积,根据直线l把△BOC分成面积比为1:2的两部得出△CDE的面积,根据三角形面积公式得出E的横坐标,将横坐标代入y=kx+6即可得到E的坐标,点E的坐标代入直线l表达式,即可求出直线l表达式;(ⅱ)设点E(m,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化工企业环保基本知识课件
- 飞蛾饲养技术培训课件
- 2026山东滨州市市属事业单位招聘备考考试试题及答案解析
- 2026四川成都东部新区芦霞卫生院编外人员招聘3人参考考试题库及答案解析
- 2026贵州贵阳礼物旅游产业发展有限公司招聘1人笔试备考试题及答案解析
- 2026中国农业科学院农业经济与发展研究所乡村发展研究室编制外科研助理招聘1人参考考试题库及答案解析
- 电气-接地-施工方案(3篇)
- 2026山东淄博桓台县面向退役大学生士兵专项岗位招聘考试参考试题及答案解析
- 2026广东佛山顺德区杏坛镇林文恩中学招聘临聘教师4人备考考试试题及答案解析
- 2026江苏连云港兴榆创业投资有限公司对外招聘岗位开考情况说明笔试备考题库及答案解析
- 房地产 -北京好房子政策研究报告-规划技术和市场效应 202502
- 土地一级市场二级市场的区别及流程
- 胸痛中心联合例会培训
- 卧式椭圆封头储罐液位体积对照表
- 国家职业技术技能标准 4-10-01-02 育婴员 人社厅发201947号
- 全球钴矿资源储量、供给及应用
- 中考字音字形练习题(含答案)-字音字形专项训练
- 消防安全责任人任命书
- MOOC 数据挖掘-国防科技大学 中国大学慕课答案
- 2024届新高考物理冲刺复习:“正则动量”解决带电粒子在磁场中的运动问题
- 中学体育与健康课程与教学论PPT高职完整全套教学课件
评论
0/150
提交评论