广东省深圳市龙岗区六约学校2024届数学八上期末调研试题含解析_第1页
广东省深圳市龙岗区六约学校2024届数学八上期末调研试题含解析_第2页
广东省深圳市龙岗区六约学校2024届数学八上期末调研试题含解析_第3页
广东省深圳市龙岗区六约学校2024届数学八上期末调研试题含解析_第4页
广东省深圳市龙岗区六约学校2024届数学八上期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市龙岗区六约学校2024届数学八上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD2.如图,,,三点在同一条直线上,,,添加下列条件,不能判定的是()A. B. C. D.3.如果把分式中的x,y同时扩大为原来的4倍,现么该分式的值()A.不变 B.扩大为原来的4倍C.缩小为原来的 D.缩小为原来的4.关于的分式方程,下列说法正确的是()A.方程的解是 B.时,方程的解是正数C.时,方程的解为负数 D.无法确定5.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表如下:捐款(元)35810人数2■■31表格中捐款5元和8元的人数不小心被墨水污染看不清楚.若设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得方程组()A. B.C. D.6.分式可变形为(

)A.

B.

C.

D.7.下列条件中,不能作出唯一三角形的是()A.已知三角形两边的长度和夹角的度数B.已知三角形两个角的度数以及两角夹边的长度C.已知三角形两边的长度和其中一边的对角的度数D.已知三角形的三边的长度8.的绝对值是()A. B. C. D.9.若,,则的值为()A.1 B. C.6 D.10.如果点和点关于轴对称,则,的值为()A., B.,C., D.,二、填空题(每小题3分,共24分)11.如图,△ABC中,AB=AC,∠BAC=48°,∠BAC的平分线与线段AB的垂直平分线OD交于点O.连接OB、OC,将∠ACB沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.12.△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是____.13.函数的定义域是__________.14.如图,在△ABC中,∠BAC=50°,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF=______.15.若(x-2)(x+3)=x2+ax+b,则a+b16.如果,则__________.17.在中,,若,则________________度18.如图,ΔABC的面积为8cm2,AP垂直∠B的平分线BP于P,则ΔPBC的面积为________.三、解答题(共66分)19.(10分)已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).20.(6分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1的图形.(2)求△ABC的面积.(3)若P点在x轴上,当BP+CP最小时,直接写出BP+CP最小值为.21.(6分)解分式方程:x-222.(8分)如图,在中,,,且,求的度数.23.(8分)如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,BC=CD=10,求AC的长.24.(8分)如图,△ABC是等边三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F为BC中点,连接AE.(1)直接写出∠BAE的度数为;(2)判断AF与CE的位置关系,并说明理由.25.(10分)如图所示,四边形OABC是长方形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,已知长方形OABC的周长为1.(1)若OA长为x,则B点坐标为_____;(2)若A点坐标为(5,0),求点D和点E的坐标.26.(10分)某工厂计划生产A、B两种产品共50件,已知A产品成本2000元/件,售价2300元/件;B种产品成本3000元/件,售价3500元/件,设该厂每天生产A种产品x件,两种产品全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:已知OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,根据角平分线的性质可得PC=PD,A正确;在Rt△OCP与Rt△ODP中,OP=OP,PC=PD,由HL可判定△OCP≌△ODP,根据全等三角形的性质可得∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故答案选B.考点:角平分线的性质;全等三角形的判定及性质.2、D【分析】根据全等三角形的判定的方法,即可得到答案.【题目详解】解:∵,,A、,满足HL的条件,能证明全等;B、,得到,满足ASA,能证明全等;C、,得到,满足SAS,能证明全等;D、不满足证明三角形全等的条件,故D不能证明全等;故选:D.【题目点拨】本题考查了全等三角形的判定,解题的关键是熟练掌握证明三角形全等的几种方法.3、D【分析】根据分式的性质可得==•,即可求解.【题目详解】解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故答案为D.【题目点拨】本题考查了分式的基本性质,给分子分母同时乘以一个整式(不为0),不可遗漏是解答本题的关键.4、C【解题分析】方程两边都乘以-5,去分母得:=-5,解得:=+5,∴当-5≠0,把=+5代入得:+5-5≠0,即≠0,方程有解,故选项A错误;当>0且≠5,即+5>0,解得:>-5,则当>-5且≠0时,方程的解为正数,故选项B错误;当<0,即+5<0,解得:<-5,则<-5时,方程的解为负数,故选项C正确;显然选项D错误.故选C.5、A【分析】设捐款5元的有x名同学,捐款8元的有y名同学,利用八(1)班学生人数为45得出一个方程,然后利用共捐款400元得出另外一个方程,再组成方程组即可.【题目详解】解:设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得:,即.故选:A.【题目点拨】本题考查二元一次方程组的应用,关键是利用总人数和总钱数作为等量关系列方程组.6、D【分析】根据分式的性质,可化简变形.【题目详解】.故答案为D【题目点拨】考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.7、C【解题分析】看是否符合所学的全等的公理或定理即可.【题目详解】A、符合全等三角形的判定SAS,能作出唯一三角形;

B、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA判定全等,因而所作三角形是唯一的;

C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;

D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【题目点拨】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.8、D【解题分析】直接利用绝对值的定义分析得出答案.【题目详解】解:-1的绝对值是:1.

故选:D.【题目点拨】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.9、C【分析】原式首先提公因式,分解后,再代入求值即可.【题目详解】∵,,∴.故选:C.【题目点拨】本题主要考查了提公因式分解因式,关键是正确确定公因式.10、A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数代入计算可解答.【题目详解】解:由题意得:,解得:a=6,b=4,故答案为:A.【题目点拨】本题考查的知识点是关于x轴对称的点的坐标之间的关系,当所求的坐标是关于x轴对称时,原坐标的横坐标不变,纵坐标为其相反数;当所求的坐标是关于y轴对称时,原坐标的纵坐标不变,横坐标为其相反数;当所求的坐标是关于原点对称时,原坐标的横、纵坐标均变为其相反数.二、填空题(每小题3分,共24分)11、1【分析】根据角平分线的定义求出∠BAO,根据等腰三角形的性质、三角形内角和定理求出∠ABC,根据线段垂直平分线的性质得到OA=OB,得到∠ABO=∠BAO,证明△AOB≌△AOC,根据全等三角形的性质、折叠的性质、三角形内角和定理计算,得到答案.【题目详解】解:∵∠BAC=48°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×48°=24°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣48°)=66°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=24°,∴∠OBC=∠ABC﹣∠ABO=66°﹣24°=42°,在△AOB和△AOC中,∴△AOB≌△AOC(SAS),∴OB=OC,∴∠OCB=∠OBC=42°,由折叠的性质可知,OE=CE,∴∠COE=∠OCB=42°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣42°﹣42°=1°,故答案为:1.【题目点拨】本题主要考查全等三角形的判定性质、垂直平分线的性质,等腰三角形的性质,三角形内角和定理,掌握全等三角形的性质、折叠的性质、垂直平分线的性质,角平分线的定义,三角形内角和定理是解题的关键.12、1<m<1【题目详解】解:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵AD=DE,∠ADB=∠EDC,BD=CD,∴△ADB≌△EDC,∴EC=AB=5,在△AEC中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<1,故答案为1<m<1.考点:全等三角形的判定与性质;三角形三边关系.13、【分析】根据二次根式的意义及性质,被开方数大于或等于0,据此作答.【题目详解】根据二次根式的意义,被开方数,解得.故函数的定义域是.故答案为:.【题目点拨】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.掌握二次根式的概念和性质是关键.14、25°【解题分析】试题分析:首先根据四边形的内角和我360°求出∠EDF=130°,则∠DEF+∠DFE=50°,根据题意得:∠EAD=∠FAD,∠AED=∠AFD=90°,AD=AD,则△ADE≌△ADF,∴DE=DF,则说明△DEF为等腰三角形,则∠DEF=∠DFE=25°.考点:三角形全等的判定和性质.15、-5【解题分析】利用多项式乘以多项式的运算法则计算(x-2)(x+3),即可求得a、b的值,由此即可求得a+b的值.【题目详解】∵x-2x+3=x∴a=1,b=-6,∴a+b=1+(-6)=-5.故答案为:-5.【题目点拨】本题考查了多项式乘以多项式的运算法则,熟练运用多项式乘以多项式的运算法则计算出x-2x+3=16、;【分析】先利用平方差公式对原式进行变形,然后整理成的形式,再开方即可得出答案.【题目详解】原式变形为即∴∴故答案为:.【题目点拨】本题主要考查平方差公式和开平方,掌握平方差公式是解题的关键.17、1【分析】根据等腰三角形的性质和三角形内角和定理即可求出答案.【题目详解】∵∴∵∴故答案为:1.【题目点拨】本题主要考查等腰三角形的性质和三角形内角和定理,掌握等腰三角形的性质和三角形内角和定理是解题的关键.18、【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【题目详解】解:延长AP交BC于E,如图所示:∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°,在△APB和△EPB中,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE=S△ABC=4cm1,故答案为4cm1.【题目点拨】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE=S△ABC.三、解答题(共66分)19、详见解析.【解题分析】根据题目要求画出线段a、h,再画△ABC,使AB=a,△ABC的高为h;首先画一条直线,再画垂线,然后截取高,再画腰即可.【题目详解】解:作图:①画射线AE,在射线上截取AB=a,②作AB的垂直平分线,垂足为O,再截取CO=h,③再连接AC、CB,△ABC即为所求.【题目点拨】此题主要考查了复杂作图,关键是掌握垂线的画法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20、(1)见解析;(2)2;(3)【分析】(1)△ABC关于y轴对称图形为△A1B1C1,根据轴对称的性质画出三个点的对称点再连接即可作出△A1B1C1;(2)用割补法求△ABC的面积即可;(3)P点在x轴上,当BP+CP最小时,即可求出BP+CP最小值.【题目详解】解:如图所示,(1)如图,△A1B1C1即为所求;(2)△ABC的面积为:;(3)作点B关于x轴的对称点B′,连接CB′交x轴于点P,此时BP+CP最小,BP+CP的最小值即为CB′=.故答案为.【题目点拨】本题结合网格图和平面直角坐标系考查了作已知图形的对称图形,割补法求三角形面积,简单的动点与最值问题,熟练掌握相关知识点是解答关键.21、【解题分析】试题分析:试题解析:去分母,得,去括号,得,移项,合并同类项,得,化x的系数为1,得,经检验,是原方程的根,∴原方程的解为.考点:解分式方程.22、10【分析】设∠B=∠C=x,∠EDC=y,构建方程即可解决问题;【题目详解】设∠B=∠C=x,∠EDC=y,∵AD=AE,∴∠ADE=∠AED=x+y,∵∠DAE=180−2(x+y)=180−20−2x,∴2y=20,∴y=10,∴∠CDE=10.【题目点拨】本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.23、(1)见解析;(2)AC的长为1.【分析】(1)首先根据垂线的意义得出∠CFD=∠CEB=90°,然后根据角平分线的性质得出CE=CF,即可判定Rt△BCE≌Rt△DCF;(2)首先由(1)中全等三角形的性质得出DF=EB,然后判定Rt△AFC≌Rt△AEC,得出AF=AE,构建方程得出CF,再利用勾股定理即可得出AC.【题目详解】(1)∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,∴∠CFD=90°,∠CEB=90°(垂线的意义)∴CE=CF(角平分线的性质)∵BC=CD(已知)∴Rt△BCE≌Rt△DCF(HL)(2)由(1)得,Rt△BCE≌Rt△DCF∴DF=EB,设DF=EB=x∵∠CFD=90°,∠CEB=90°,CE=CF,AC=AC∴Rt△AFC≌Rt△AEC(HL)∴AF=AE即:AD+DF=AB﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x解得,x=6在Rt△DCF中,∵DF=6,CD=10∴CF=8∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289∴AC=1答:AC的长为1.【题目点拨】此题主要考查角平分线、全等三角形的判定与性质以及勾股定理的运用,熟练掌握,即可解题.24、(1)90°;(2)AF∥EC,见解析【分析】(1)分别利用等边三角形的性质和等腰三角形的性质求出∠BAC,∠CAE的度数,然后利用∠BAE=∠BAC+∠CAE即可解决问题;(2)根据等边三角形的性质有AF⊥BC,然后利用等边三角形的性质和等腰三角形的性质得出,∠BCE=90°则有EC⊥BC,再根据垂直于同一条直线的两直线平行即可得出结论.【题目详解】解:(1)∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵EA=EC,∠AEC=120°,∴EAC=∠ECA=30°,∴∠BAE=∠BAC+∠CAE=90°.故答案为90°.(2)结论:AF∥EC.理由:∵AB=AC,BF=CF,∴AF⊥BC,∵∠ACB=60°,∠ACE=30°,∴∠BCE=90°,∴EC⊥BC,∴AF∥EC.【题目点拨】本题主要考查等边三角形和等腰三角形的性质,平行线的判定,三角形内角和定理,掌握等边三角形和等腰三角形的性质,平行线的判定,三角形内角和定理是解题的关键.25、(1)B点坐标为(x,8-x);(2)D的坐标是(0,),E的坐标是(1,3).【分析】(1)根据长方形的特点得到OA+AB=8,故OA=x,AB=8-x,即可写出B点坐标;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论