版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆乌鲁木齐水磨沟区四校联考数学八上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.分式可变形为()A. B. C. D.2.如图,,以点为圆心,小于长为半径作弧,分别交、于、两点,再分别以为圆心,大于的长为半径画弧,两弧交于点,作射线,交于点,若,则的度数为()A. B. C. D.3.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处4.化简|-|的结果是()A.- B. C. D.5.下列给出的四组数中,不能构成直角三角形三边的一组是()A.3,4,5 B.5,12,13 C.1,2, D.6,8,96.的三边长分别为,下列条件:①;②;③;④.其中能判断是直角三角形的个数有()A.1个 B.2个 C.3个 D.4个7.我国的纸伞工艺十分巧妙,如图,伞圈D能沿着伞柄滑动,伞不论张开还是缩拢,伞柄AP始终平分同一平面内所成的角∠BAC,为了证明这个结论,我们的依据是A.SAS B.SSS C.AAS D.ASA8.下列命题的逆命题为假命题的是()A.有两角互余的三角形是直角三角形 B.如果,那么直线经过一、三象限C.如果,那么点在坐标轴上 D.三边分别相等的两个三角形全等9.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.2 C.5 D.410.下列运算正确的是()A.(8x3-4x2)÷4x=2x2-x B.x5x2=x10C.x2y3÷(xy3)=xy D.(x2y3)2=x4y5二、填空题(每小题3分,共24分)11.如图,小颖同学折叠一个直角三角形的纸片,使与重合,折痕为,若已知,,则的长为________.12.如图,在中,,平分交BC于点,于点.若,则_______________.13.已知关于x的方程无解,则__________.14.若分式有意义,则__________.15.已知,则的值为_________________________.16.若二元一次方程组的解是则一次函数的图象与一次函数的图象的交点坐标为________.17.如下图,在△ABC中,∠B=90°,∠BAC=40°,AD=DC,则∠BCD的度数为______.18.如图,中,,,,平分,为的中点.若,,则__________.(用含,的式子表示)三、解答题(共66分)19.(10分)如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.20.(6分)在5×7的方格纸上,任意选出5个小方块涂上颜色,使整个图形(包括着色的“对称”)有:①1条对称轴;②2条对称轴;③4条对称轴.21.(6分)(1)计算:;(2)分解因式:.22.(8分)某商店两次购进一批同型号的热水壶和保温杯,第一次购进个热水壶和个保温杯,共用去资金元,第二次购进个热水壶和个保温杯,用去资金元(购买同一商品的价格不变)(1)求每个热水壶和保温杯的采购单价各是多少元?(2)若商场计划再购进同种型号的热水壶和保温杯共个,求所需购货资金(元)与购买热水壶的数量(个)的函数表达式.23.(8分)央视举办的《中国诗词大会》受到广泛的关注某中学学生会就《中国诗词大会》节目的喜爱程度,在校内进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D;根据调査结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:(1)本次被调查对象共有_________人;被调查者“不太喜欢”有__________人;(2)将扇形统计图和条形统计图补充完整;(3)某中学约有500人,请据此估计“比较喜欢”的学生约有多少人?24.(8分)先化简再求值:(1),其中,;(2),其中.25.(10分)已知如图,直线与x轴相交于点A,与直线相交于点P.PD垂直x轴,垂足为D.(1)求点P的坐标.(2)请判断△OPA的形状并说明理由.26.(10分)先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据分式的性质逐项进行化简即可,注意负号的作用.【题目详解】
故选项A、B、C均错误,选项D正确,故选:D.【题目点拨】本题考查分式的性质,涉及带负号的化简,是基础考点,亦是易错点,掌握相关知识是解题关键.2、A【分析】先由平行线的性质得出,进而可求出的度数,再根据角平分线的定义求出的度数,则的度数可知,最后利用求解即可.【题目详解】∵∴∵AH平分故选:A.【题目点拨】本题主要考查平行线的性质和角平分线的画法及定义,掌握平行线的性质和角平分线的画法及定义是解题的关键.3、D【分析】根据线段垂直平分线的性质即可得出答案.【题目详解】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.【题目点拨】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.4、C【解题分析】根据绝对值的性质化简|-|即可.【题目详解】|-|=故答案为:C.【题目点拨】本题考查了无理数的混合运算,掌握无理数的混合运算法则、绝对值的性质是解题的关键.5、D【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【题目详解】A.∵32+42=52,∴能构成直角三角形三边;B.∵52+122=132,∴能构成直角三角形三边;C.∵12+()2=22,∴能构成直角三角形三边;D.∵62+82≠92,∴不能构成直角三角形三边.故选:D.【题目点拨】本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6、C【分析】根据直角三角形的定义,勾股定理的逆定理一一判断即可.【题目详解】解:①∠A=∠B-∠C,可得:∠B=90°,是直角三角形;
②∠A:∠B:∠C=3:4:5,可得:∠C=75°,不是直角三角形;
③a2=(b+c)(b-c),可得:a2+c2=b2,是直角三角形;
④a:b:c=5:12:13,可得:a2+b2=c2,是直角三角形;∴是直角三角形的有3个;故选:C.【题目点拨】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.7、B【分析】根据确定三角形全等的条件进行判定即可得解.【题目详解】解:根据伞的结构,AE=AF,伞骨DE=DF,AD是公共边,
∵在△ADE和△ADF中,∴△ADE≌△ADF(SSS),
∴∠DAE=∠DAF,
即AP平分∠BAC.
故选B.【题目点拨】本题考查了全等三角形的应用,理解题意确定出全等的三角形以及全等的条件是解题的关键.8、C【分析】先逐一得出每个命题的逆命题,然后再判断真假即可.【题目详解】A的逆命题是直角三角形有两角互余,是真命题,故该选项不符合题意;B的逆命题是如果直线经过一、三象限,那么,是真命题,故该选项不符合题意;C的逆命题是如果点在坐标轴上,那么,是假命题,故该选项符合题意;D的逆命题是如果两个三角形全等,那么这两个三角形的三边相等,是真命题,故该选项不符合题意;故选:C.【题目点拨】本题主要考查逆命题和真假命题,会写出命题的逆命题是解题的关键.9、D【分析】证明△BDH≌△ADC,根据全等三角形的对应边相等即可得出结论.【题目详解】∵AD⊥BC,∴∠BDH=∠ADC=90°.∵∠ABC=15°,∴∠BAD=∠ABC=15°,∴AD=BD.∵BE⊥AC,∴∠BEC=90°,∴∠CAD+∠C=90°,∠DBH+∠C=90°,∴∠DBH=∠CAD.在△BDH和△ADC中,∵,∴△BDH≌△ADC(ASA),∴AC=BH.∵AC=1,∴BH=1.故选:D.【题目点拨】本题考查了三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定,解答此题的关键是能求出△BDH≌△ADC,难度适中.10、A【分析】根据整式的除法法则、同底数幂相乘的法则、积的乘方和幂的乘方法则对各选项进行分析即可求解.【题目详解】(8x3﹣4x2)÷4x=2x2﹣x,故选项A正确;x1x2=x7≠x10,故选项B错误;x2y3÷(xy3)=x≠xy,故选项C错误;(x2y3)2=x4y6≠x4y1.故选项D错误.故选:A.【题目点拨】本题考查了同底数幂的乘法、多项式除以单项式、单项式除以单项式及积的乘方,题目比较简单,掌握整式的运算法则是解决本题的关键.二、填空题(每小题3分,共24分)11、【分析】连接BE,根据线段垂直平分线性质可得BE=AE,再由勾股定理可得CB²+CE²=BE².【题目详解】解:连接BE由折叠可知,DE是AB的垂直平分线
∴BE=AE
设CE为x,则BE=AE=8-x
在Rt△BCE中,
由勾股定理,得
CB²+CE²=BE²
∴6²+x²=(8-x)²
解得∴CE=【题目点拨】考核知识点:勾股定理.根据折叠的性质,把问题转化为利用勾股定理来解决.12、56°【分析】根据三角形内角和定理证明∠DBE=∠DAC,再根据角平分线的定义即可解决问题.【题目详解】∵∠C=∠E=90°,∠ADC=∠BDE,∴∠DBE=∠DAC=28°.∵AD平分∠CAB,∴∠CAB=2∠CAD=2×28°=56°.故答案为:56°.【题目点拨】本题考查了三角形内角和定理,角平分线的定义等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.13、0或1【分析】根据分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,分类讨论当a=0时与a≠0时求出答案.【题目详解】解:去分母得:,即:,分情况讨论:①当整式方程无解时,,此时分式方程无解;②当分式方程无解时,即x=2,此时,则,解得:,故当或者时分式方程无解;故答案为:0或1【题目点拨】本题主要考查了分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,正确掌握解分式方程的步骤是解题的关键.14、≠【分析】根据分式有意义的条件作答即可,即分母不为1.【题目详解】解:由题意得,2x-1≠1,解得x≠.故答案为:≠.【题目点拨】本题考查分式有意义的条件,掌握分式有意义时,分母不为1是解题的关键.15、-1【分析】根据多项式乘多项式法则将等式左侧展开,然后利用对应系数法即可求出m+n和mn,然后将所求多项式因式分解,最后用整体代入法求值即可.【题目详解】解:∵∴∴m+n=2,mn=-6===-1故答案为:-1.【题目点拨】此题考查的是多项式乘多项式和因式分解,掌握多项式乘多项式法则和用提公因式法因式分解是解决此题的关键.16、(2,7).【解题分析】根据一次函数图象交点坐标为两个一次函数解析式联立组成的方程组的解,确定一次函数与的图象的交点坐标.【题目详解】解:若二元一次方程组的解是,则一次函数的图象与一次函数的图象的交点坐标为(2,7).故答案为:(2,7).【题目点拨】本题考查一次函数与二元一次方程组.理解一次函数与二元一次方程(组)的关系是解决此类问题的关键.17、10°【分析】由余角的性质,得到∠ACB=50°,由AD=DC,得∠ACD=40°,即可求出∠BCD的度数.【题目详解】解:在△ABC中,∠B=90°,∠BAC=40°,∴∠ACB=50°,∵AD=DC,∴∠ACD=∠A=40°,∴∠BCD=50°40°=10°;故答案为:10°.【题目点拨】本题考查了等边对等角求角度,余角的性质解题的关键是熟练掌握等边对等角的性质和余角的性质进行解题.18、【分析】根据等边三角形的判定,在边CA上截取CT=CB,连接BT,得是等边三角形,由等边三角形的性质,是角平分线,也是底边的中垂线,可得,由外角性质证明为等腰三角形,得到,过点F作,知为的中位线,,可求得.【题目详解】在边CA上截取CT=CB,连接BT,DT,过点F作,连接EH,,,是等边三角形,,平分,垂直平分BT,DT=DB,,是的外角,,,,,,又为的中点,,,,,,,,,为的中位线,.故答案为:.【题目点拨】考查了等边三角形的判定、性质,等腰三角形的判定性质,中垂线的判定和性质,以及外角的性质和三角形中位线的性质,熟记三角形的性质,判定定理是解决几何图形题的关键.三、解答题(共66分)19、(1)见解析;(2)△AEG是等边三角形;理由见解析;(3)见解析.【分析】(1)如图1,根据等边三角形的性质得到∠ACB=∠ECF=60°,AC=BC,CE=FC,推出△ACE≌△FCB,得到∠CBF=∠A=60°,于是得到∠CBF=∠ACB,根据平行线的判定定理即可得到AC∥BF;
(2)过E作EG∥BC交AC于G,根据等边三角形的判定定理可证明△AEG是等边三角形;(3)由(2)可知∠DAE=∠EGC=120°,可证明△ADE≌△GCE,进而得到AD=CG,再由(1)BF=AE=AG,于是可证得AB=BF+AD.【题目详解】解:(1)如图1,
∵△ABC和△EFC都是等边三角形,
∴∠ACB=∠ECF=∠A=60°,AC=BC,CE=FC,
∴∠1+∠3=∠2+∠3,
∴∠1=∠2,
在△ACE与△FCB中,,∴△ACE≌△FCB,
∴∠CBF=∠A=60°,
∴∠CBF=∠ACB,∴AC∥BF;
(2)△AEG是等边三角形,理由如下:如图,过E作EG∥BC交AC于G,∵∠ABC=∠ACB=60°,
∴∠AEG=∠AGE=60°,
∴△AEG是等边三角形.
(3)如图2,过E作EG∥BC交AC于G,由(2)可知△AEG是等边三角形,∴AE=EG=AG,∠GAE=∠AGC=60°,
∴∠DAE=∠EGC=120°,
∵DE=CE,∴∠D=∠1,
∴△ADE≌△GCE,
∴AD=CG,
∴AC=AG+CG=AG+AD,由(1)得△ACE≌△FCB,
∴BF=AE,
∴BF=AG,
∴AC=BF+AD,
∴AB=BF+AD.【题目点拨】本题考查了等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.20、答案见解析.【分析】①直接利用轴对称图形的性质得出符合题意的答案;②直接利用轴对称图形的性质得出符合题意的答案;③直接利用轴对称图形的性质得出符合题意的答案.【题目详解】①如图1所示:②如图2所示:③如图3所示:21、(1);(2)【分析】(1)根据整式的乘法运算法则即可运算;(2)先提公因式-3y,再利用完全平方工时即可因式分解.【题目详解】解:(1)原式==(2)==【题目点拨】本题考查了整式的乘法运算及因式分解,解题的关键是掌握整式的乘法运算法则,提公因式法与公式法进行因式分解.22、(1)每个热水壶的采购单价是200元,每个保温杯的采购单价是30元;(2)w=200m+30(80−m)=170m+2400【分析】(1)设每个热水壶的采购单价是x元,每个保温杯的采购单价是y元,根据“第一次购进12个热水壶和15个保温杯,共用去资金2850元,第二次购进20个热水壶和30个保温杯,用去资金4900元”列方程组解答即可;(2)根据题意和(1)的结论即可得出所需购货资金w(元)与购买热水壶的数量m(个)的函数表达式.【题目详解】解:(1)设每个热水壶的采购单价是x元,的采购单价保温杯的采购单价是y元,根据题意得,解得,答:每个热水壶的采购单价是200元,每个保温杯的采购单价是30元;(2)根据题意得:w=200m+30(80−m)=170m+2400;【题目点拨】本题考查了二元一次方程组的应用,一次函数的应用等知识,解题的关键是理解题意,学会构建方程组、一次函数解决问题.23、(1)50,5;(2)见解析;(3)该校500名学生中“比较喜欢”的有200人.【分析】(1)从两个统计图可得,“A组”的有15人,占调查人数的30%,可求出调查人数;再用调查人数乘以“D组”所占的百分比即可求出“D组人数”;
(2)求出“C组”人数,即可补全条形统计图,求出“B组”“C组”所占的百分比即可补全扇形统计图;
(3)样本中,“B组比较喜欢”占40%,因此估计总体500名学生中有40%的同学是“B组比较喜欢”;【题目详解】解:(1)15÷30%=50人,“D组”人数:50×10%=5人,
故答案为:50,5;
(2)“C组”人数:50-15-20-5=10人,
“B组”所占百分比为:20÷50=40%,
“C组”所占百分比为:10÷50=20%,补全扇形和条形统计图如图所示:
(3)500×40%=200人,
答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州涡轮法兰蝶阀项目可行性研究报告模板范本
- 钢丝可行性研究报告
- 钻孔灌注桩施工方案五
- 阜新新邱区教师招聘教师资格证《小学教育教学知识与能力》试题含答案
- 防洪闸项目可行性研究报告
- 食堂改建 可行性研究报告
- 高性能镍基高温合金粉体材料项目可行性研究报告方案可用于立项
- 黄山学院《心理学》期末考试试题
- 班组长综合管理技能竞赛网上练兵试题库
- 巢湖代理记账协议书
- 矩阵理论知到智慧树章节测试课后答案2024年秋中国石油大学(华东)
- PC叠合板吊装专项施工方案(盘扣架)
- 2024年天津市紫云中学高二上期中-数学试卷
- 【公开课】好选择赢未来 课件-2024-2025学年高一上学期选科指导班会
- 《城市总体规划》课件
- 肠病型T细胞淋巴瘤
- 广西柳州市壶西实验中学等2024-2025学年九年级上学期期中联考化学试卷(含答案)
- 医药研发流程及质量管理手册
- 2021九年级英语上学期期末复习专项训练看图写话1仁爱版(含答案)
- 蛋糕卡购买合同范本
- 大学生心理健康与发展(高等院校心理健康教育)全套教学课件
评论
0/150
提交评论