版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题16点和圆、直线和圆的位置关系(9个知识点5种题型4种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.点和圆的位置关系(重点)知识点2.圆的确定条件知识点3.三角形的外接圆知识点4.反证法(难点)知识点5.直线和圆的位置关系(重点)知识点6.切线的判定定理和性质定理(重点)(难点)知识点7.切线长及切线长定理(重点)知识点8.三角形的内切圆知识点9.圆和圆的位置关系(拓展)【方法二】实例探索法题型1.直线与圆的位置关系的应用题型2.切线性质的应用题型3.切线长定理的应用题型4.切线的判定和性质的综合应用题型5.三角形外心、内心的应用【方法三】仿真实战法考法1直线与圆的位置关系考法2.切线的性质考法3.切线的判定考法4.直角三角形中的内切圆【方法四】成果评定法【学习目标】了解点和圆的三种位置关系的图形特征;掌握点到圆心的距离与半径之间的数量关系;掌握“不在同一直线上的三点确定一个圆”,并能作出这个圆。了解反证法的意义,会用反证法进行简单的证明。掌握直线和圆的三种位置关系的特点及判别方法;了解割线、切线的概念;掌握切线的判定和性质,并能灵活运用。了解并会应用切线长定理,了解三角形的内切圆、三角形的内心等概念。体验数形结合思想和建模思想,提高解决实际问题的能力。【知识导图】【倍速学习五种方法】【方法一】脉络梳理法知识点1.点和圆的位置关系(重点)(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.【例1】(2023春·江苏苏州·九年级统考阶段练习)已知的半径为4,点A到圆心O的距离为4,则点A与的位置关系是(
)A.点A在圆内 B.点A在圆上 C.点A在圆外 D.无法确定知识点2.圆的确定条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.【例2】(2022春•射阳县校级期中)如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为.知识点3.三角形的外接圆(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的三条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.【例3】(2022秋•广陵区校级期末)如图,点A(0,3),B(2,1),C在平面直角坐标系中,则△ABC的外心在()A.第四象限 B.第三象限 C.原点O处 D.y轴上知识点4.反证法(难点)【例4】(2023春·九年级课时练习)反证法是数学证明的一种重要方法.请将下面运用反证法进行证明的过程补全.已知:在中,.求证:.证明:假设_____________________.∵,∴,∴,这与_______________________.∴_______________________不成立.∴知识点5.直线和圆的位置关系(重点)(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.
(3)相离:直线和圆没有公共点时,叫做直线和圆相离.由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.
如果⊙O的半径为r,圆心O到直线的距离为d,那么
【例5】(2022秋•宜兴市期末)已知⊙O的半径为6cm,点O到直线l的距离为7cm,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法确定知识点6.切线的判定定理和性质定理(重点)(难点)(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.(3)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(4)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(5)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.要点诠释:
切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可.【例6】.(2023•沛县模拟)如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.【变式1】如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.【变式2】如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°知识点7.切线长及切线长定理(重点)(1)圆的切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.【例7】如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为.知识点8.三角形的内切圆1.三角形的内切圆:
与三角形各边都相切的圆叫做三角形的内切圆.
2.三角形的内心:
三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心到三边的距离都相等.
要点诠释:
(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;
(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).
(3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.【例8】(2023•泗阳县一模)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形,勾(短直角边)长为八步,股(长直角边)长为十五步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径长是()A.3步 B.5步 C.6步 D.8步知识点9.圆和圆的位置关系(拓展)1.圆与圆的五种位置关系的定义两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.
两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.
两圆相交:两个圆有两个公共点时,叫做这两圆相交.
两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.
两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.
2.两圆的位置与两圆的半径、圆心距间的数量关系:
设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则:
两圆外离d>r1+r2
两圆外切d=r1+r2
两圆相交r1r2<d<r1+r2(r1≥r2)
两圆内切d=r1r2(r1>r2)
两圆内含d<r1r2(r1>r2)
要点诠释:
(1)圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交;
(2)内切、外切统称为相切,唯一的公共点叫作切点;
(3)具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.【例9】设Rr两的径为圆果们足R2r22Rdd20么这个的置系( )A.外离 B.相切 C.相交 D.内含【方法二】实例探索法题型1.直线与圆的位置关系的应用1.(2022春·九年级课时练习)如图,已知⊙O的半径为5cm,点O到直线l的距离OP为7cm.(1)怎样平移直线l,才能使l与⊙O相切?(2)要使直线l与⊙O相交,设把直线l向上平移xcm,求x的取值范围2.(2022春·全国·九年级专题练习)已知的半径为,点到直线的距离为,且直线与相切,若,分别是方程的两个根,求的值.题型2.切线性质的应用3.(2023•建邺区二模)如图,在平面直角坐标系中,点P的坐标是(4,5),⊙P与x轴相切,点A,B在⊙P上,它们的横坐标分别是0,9.若⊙P沿着x轴向右作无滑动的滚动,当点B第一次落在x轴上时,此时点A的坐标是()A.(7+2π,9) B.(π,9) C.(7+2π,8) D.(π,8)4.(2023•工业园区校级模拟)如图,半径为10的⊙M经过x轴上一点C,与y轴交于A、B点,连接AM、AC,AC平分∠OAM,AO+CO=12.(1)判断⊙M与x轴的位置关系,并说明理由;(2)求AB的长.5.(2023•崇川区校级三模)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,点C在⊙O上,连接OA,OC,AC.(1)求证:∠AOC=2∠PAC;(2)连接OB,若AC∥OB,⊙O的半径为5,AC=6,求AP的长.题型3.切线长定理的应用6.(2021•滨海县一模)如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.7.(2021秋•泰州月考)如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.题型4.切线的判定和性质的综合应用8.(2023•邗江区二模)如图,△ABC中,AB=AC,⊙O过B、C两点,且AB是⊙O的切线,连接AO交劣弧BC于点P.(1)证明:AC是⊙O的切线;(2)若AB=8,AP=4,求⊙O的半径.9.已知AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)如图①,△OPC的最大面积是;(2)如图②,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.题型5.三角形外心、内心的应用10.(2022秋•鼓楼区期中)如图,正方形ABCD、等边三角形AEF内接于同一个圆,则的度数为()A.15° B.20° C.25° D.30°11.(2023•姑苏区校级二模)如图,E为正方形ABCD的边CD上一点(不与C、D重合),将△BCE沿直线BE翻折到△BFE,延长EF交AE于点G,点O是过B、E、G三点的圆劣弧EG上一点,则∠EOG=°.12.(2022秋•太仓市校级月考)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=3,BD为⊙O的直径,则AD的值为()A.6 B. C.3 D.13.(2023•秦淮区模拟)如图,△ABC是⊙O的内接三角形,,把△ABC绕点O按逆时针方向旋转90°得到△BED,则对应点C,D之间的距离为.14.如图,△ABC内接于⊙O;∠A=30°,过圆心O作OD⊥BC,垂足为D.若⊙O的半径为6,求OD的长.15.如图,⊙O是△ABC的外接圆,AD⊥BC于点D,圆心O在AD上,AB=10,BC=12,求⊙O的半径.16.(2022秋•海州区校级月考)阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值.解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,所以t=±9,因为2m2+n2≥0,所以2m2+n2=9.这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题.(1)已知实数x、y,满足(2x2+2y2+3)(2x2+2y2﹣3)=27,求x2+y2的值;(2)已知Rt△ACB的三边为a、b、c(c为斜边),其中a、b满足(a2+b2﹣1)(a2+b2﹣4)=5(a2+b2)(a2+b2﹣4),求Rt△ACB外接圆的半径.17.(2022秋•宿城区期中)如图,BD,CE是△ABC的高,BD,CE相交于点F,M是BC的中点,⊙O是△ABC的外接圆.(1)点B,C,D,E是否在以点M为圆心的同一个圆上?请说明理由.(2)若AB=8,CF=6,求△ABC外接圆的半径长.18.(2023•靖江市模拟)等腰三角形的底边长为12,腰长为10,该等腰三角形内心和外心的距离为.19.(2022秋•建邺区期末)如图,△ABC中,∠ACB=90°,AC=3,BC=4,CD是边E上的高,⊙E,⊙F分别是△ACD,△BCD的内切圆,则⊙E与⊙F的面积比为.20.(2022秋•江阴市期末)如图,⊙O是△ABC的内切圆,切点分别为D、F、G,∠B=65°,∠C=45°,则∠DGF的度数是°.21.(2023•沭阳县一模)如图⊙O是△ABC的内切圆,切点分别是D,E,F,其中AB=6,BC=9,AC=11,若MN与⊙O相切与G点,与AC,BC相交于M,N点,则△CMN的周长等于.22.(2022春•定远县校级月考)已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.若AC=12cm,BC=9cm,求⊙O的半径r;若AC=b,BC=a,AB=c,求⊙O的半径r.【方法三】仿真实战法考法1直线与圆的位置关系1.(2023•宿迁)在同一平面内,已知⊙O的半径为2,圆心O到直线l的距离为3,点P为圆上的一个动点,则点P到直线l的最大距离是()A.2 B.5 C.6 D.82.(2023•镇江)已知一次函数y=kx+2的图象经过第一、二、四象限,以坐标原点O为圆心,r为半径作⊙O.若对于符合条件的任意实数k,一次函数y=kx+2的图象与⊙O总有两个公共点,则r的最小值为.考法2.切线的性质3.(2023•哈尔滨)如图,AB是⊙O的切线,A为切点,连接OA,点C在⊙O上,OC⊥OA,连接BC并延长,交⊙O于点D,连接OD,若∠B=65°,则∠DOC的度数为()A.45° B.50° C.65° D.75°4.(2023•衢州)如图是一个圆形餐盘的正面及其固定支架的截面图,凹槽ABCD是矩形.当餐盘正立且紧靠支架于点A,D时,恰好与BC边相切,则此餐盘的半径等于cm.考法3.切线的判定5.(2023•攀枝花)如图,AB为⊙O的直径,如果圆上的点D恰使∠ADC=∠B,求证:直线CD与⊙O相切.6.(2022•宁夏)如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.(1)求证:直线DE是⊙O的切线;(2)求证:AB=AM;(3)若ME=1,∠F=30°,求BF的长.7.(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.考法4.直角三角形中的内切圆8.(2023•广州)如图,△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,若⊙I的半径为r,∠A=α,则(BF+CE﹣BC)的值和∠FDE的大小分别为()A.2r,90°﹣α B.0,90°﹣α C.2r, D.0,9.(2023•镇江)《九章算术》中记载:“今有勾八步,股一十五步.问勾中容圆径几何?”译文:今有一个直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少?书中给出的算法译文如下:如图,根据勾、股,求得弦长.用勾、股、弦相加作为除数,用勾乘以股,再乘以2作为被除数,商即为该直角三角形内切圆的直径,求得该直径等于步(注:“步”为长度单位).10.(2023•湖北)如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD=.【方法四】成果评定法一.选择题(共10小题)1.(2023秋•扬州校级月考)下列说法,错误的是()A.直径是弦 B.等弧所对的圆心角相等 C.弦的垂直平分线一定经过圆心 D.过三点可以确定一个圆2.(2023秋•渝中区校级月考)如图,已知AB与⊙O相切于点A,AC是⊙O的直径,连接BC交⊙O于点D,E为⊙O上一点,当∠CED=58°时,∠B的度数是()A.32° B.64° C.29° D.58°3.(2023秋•五华区校级月考)如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O的切线,则△CDE的周长为()A.9 B.7 C.11 D.84.(2023秋•诸暨市校级月考)如图,△ABC内接于⊙O,直径AD=8cm,∠B=60°,则AC的长度为()A.5cm B.4cm C.4cm D.6cm5.(2022秋•鼓楼区校级月考)如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=4,AC=3,则BD的长是()A. B.2 C. D.16.(2023春•青山区校级月考)如图,不等边△ABC内接于⊙O,I是其内心,BI⊥OI,AC=14,BC=13,△ABC内切圆半径为()A.4 B. C. D.7.(2023秋•广陵区月考)在同一平面内,点P到圆上的点的最大距离为6,最小距离为4,则此圆的半径为()A.2 B.5 C.1 D.5或18.(2023秋•台江区校级月考)在直角坐标系中,点P的坐标是,⊙P的半径为2,下列说法正确的是()A.⊙P与x轴、y轴都有两个公共点 B.⊙P与x轴、y轴都没有公共点 C.⊙P与x轴有一个公共点,与y轴有两个公共点 D.⊙P与x轴有两个公共点,与y轴有一个公共点9.(2023秋•栖霞区校级月考)如图,O为△ABC的外心,四边形OCDE为正方形.以下结论:①O是△ABE的外心;②O是△ACD的外心;③直线DE与△ABC的外接圆相切.其中所有正确结论的序号是()A.①② B.①③ C.②③ D.①②③10.(2023秋•栖霞区校级月考)如图,点O是△ABC的内心,也是△DBC的外心.若∠A=84°,则∠D的度数为()A.42° B.66° C.76° D.82°二.填空题(共8小题)11.(2023秋•鼓楼区校级月考)如图,在平面直角坐标系中,已知点A(1,0),P(﹣1,0),⊙P过原点O,且与x轴交于另一点D,AB为⊙P的切线,B为切点,BC是⊙P的直径,则∠BCD的度数为°.12.(2023秋•滨海县月考)平面直角坐标系内的三个点A(4,﹣3)、B(0,﹣3)、C(2,﹣3),确定一个圆,(填“能”或“不能”).13.(2023秋•江都区月考)已知直角△ABC的斜边长为6,则这个三角形的外接圆的半径等于.14.(2023秋•台江区校级月考)在Rt△ABC中,∠C=90°,AC=2,AB=4,如果以点A为圆心,AC为半径作⊙A,那么斜边AB的中点D在⊙A.(填“内”、“上”或者“外”)15.(2023春•曾都区月考)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若∠CAD=75°,则∠B的度数是.16.(2023秋•建邺区校级月考)如图,点P在矩形AOBC的内部,⊙P与AO,OB都相切,且经过点C,与BC相交于点D.若⊙P的半径为5,AO=8.则OB的长是.17.(2023秋•鼓楼区校级月考)如图,AB为⊙O的直径,AC是⊙O的切线,点A是切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于人工智能的医学图像识别
- 医疗机器人与辅助手术技术
- 心电图室工作亮点总结
- 2026年广东江门中医药职业学院单招职业技能笔试参考题库带答案解析
- 2026年白城医学高等专科学校单招综合素质考试参考题库带答案解析
- 2026年湖北科技学院继续教育学院单招综合素质笔试模拟试题带答案解析
- 2026年成都文理学院单招综合素质考试模拟试题带答案解析
- 医疗机器人辅助康复治疗的应用
- 生物组织工程与再生医学
- 2026年福建农林大学金山学院单招职业技能笔试参考题库带答案解析
- 水冷精密空调培训课件
- 大型机械设备安全操作培训教材
- 室外给排水管道施工技术交底范本
- 移动电源生产工艺流程
- 动静脉内瘘术后护理查房规范
- 核安全事故培训课件
- 码头泊位改造试运行方案
- 2025年中考英语真题分类汇编(全国)专题04 时态、语态、三大从句及常识和情景交际(原卷版)
- 【语文】北京市朝阳外语小学小学二年级上册期末试卷(含答案)
- 追女生的聊天技巧
- 药物配置错误不良事件
评论
0/150
提交评论