2024届湖北省宜昌市示范高中协作体高二数学第一学期期末学业水平测试模拟试题含解析_第1页
2024届湖北省宜昌市示范高中协作体高二数学第一学期期末学业水平测试模拟试题含解析_第2页
2024届湖北省宜昌市示范高中协作体高二数学第一学期期末学业水平测试模拟试题含解析_第3页
2024届湖北省宜昌市示范高中协作体高二数学第一学期期末学业水平测试模拟试题含解析_第4页
2024届湖北省宜昌市示范高中协作体高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省宜昌市示范高中协作体高二数学第一学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l的方向向量,平面α的一个法向量为,则直线l与平面α的位置关系是()A.平行 B.垂直C.在平面内 D.平行或在平面内2.已知公差为的等差数列满足,则()A B.C. D.3.已知双曲线:,直线经过点,若直线与双曲线的右支只有一个交点,则直线的斜率的取值范围是()A. B.C. D.4.双曲线C:的右焦点为F,过点F作双曲线C的两条渐近线的垂线,垂足分别为H1,H2.若,则双曲线C的离心率为()A. B.C. D.25.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.806.已知函数,在定义域内任取一点,则使的概率是()A. B.C. D.7.已知数列满足,且,那么()A. B.C. D.8.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.9.下列求导运算正确的是()A. B.C. D.10.已知函数,,若对于任意的,存在唯一的,使得,则实数a的取值范围是()A(e,4) B.(e,4]C.(e,4) D.(,4]11.已知命题:,;命题:在中,若,则,则下列命题为真命题的是()A. B.C. D.12.下列导数运算正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,AD与BC是三棱锥中互相垂直的棱,,(c为常数).若,则实数的取值范围为__________.14.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy中,A(-2,1),B(-2,4),点P是满足的阿氏圆上的任一点,则该阿氏圆的方程为___________________;若点Q为抛物线E:y2=4x上的动点,Q在直线x=-1上的射影为H,则的最小值为___________.15.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点,均在轴上,且,的面积为,则的标准方程为______16.曲线在点处的切线方程为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若是双曲线的两个焦点.(1)若双曲线上一点到它的一个焦点的距离等于10,求点到另一个焦点距离;(2)如图若是双曲线左支上一点,且,求的面积.18.(12分)如图,在空间四边形中,分别是的中点,分别在上,且(1)求证:四点共面;(2)设与交于点,求证:三点共线.19.(12分)已知函数(1)讨论的单调性;(2)当时,证明20.(12分)已知椭圆的中心在原点,焦点为,,且长轴长为4.(1)求椭圆的方程;(2)直线与椭圆相交于A,两点,求弦长.21.(12分)已知圆,直线过定点.(1)若与圆相切,求的方程;(2)若与圆相交于两点,且,求此时直线的方程.22.(10分)已知函数(1)讨论函数的单调性;(2)若函数有两个零点,,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,结合线面位置关系的向量判断方法,即可求解.【详解】根据题意,因为,所以,所以直线l与平面α的位置关系是平行或在平面内故选:D2、C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C3、D【解析】以双曲线的两条渐近线作为边界条件,即可保证直线与双曲线的右支只有一个交点.【详解】双曲线:的两条渐近线为和两渐近线的倾斜角分别为和由经过点的直线与双曲线的右支只有一个交点,可知直线的倾斜角取值范围为,故直线的斜率的取值范围是故选:D4、D【解析】将条件转化为该双曲线的一条渐近线的倾斜角为,可得,由离心率公式即可得解.【详解】由题意,(为坐标原点),所以该双曲线的一条渐近线的倾斜角为,所以,即,所以离心率.故选:D.5、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C6、A【解析】解不等式,根据与长度有关的几何概型即可求解.【详解】由题意得,即,由几何概型得,在定义域内任取一点,使的概率是.故选:A.7、D【解析】由递推公式得到,,,再结合已知即可求解.【详解】解:由,得,,又,那么故选:D8、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D9、B【解析】根据基本初等函数的导数和求导法则判断.【详解】,,,,只有B正确.故选:B.【点睛】本题考查基本初等函数的导数公式,考查导数的运算法则,属于基础题.10、B【解析】结合导数和二次函数的性质可求出和的值域,结合已知条件可得,,从而可求出实数a的取值范围.【详解】解:g(x)=x2ex的导函数为g′(x)=2xex+x2ex=x(x+2)ex,当时,,由时,,时,,可得g(x)在[–1,0]上单调递减,在(0,1]上单调递增,故g(x)在[–1,1]上的最小值为g(0)=0,最大值为g(1)=e,所以对于任意的,.因为开口向下,对称轴为轴,又,所以当时,,当时,,则函数在[,2]上的值域为[a–4,a],且函数f(x)在,图象关于轴对称,在(,2]上,函数单调递减.由题意,得,,可得a–4≤0<e<,解得ea≤4故选:B【点睛】本题考查了利用导数求函数的最值,考查了二次函数的性质,属于中档题.本题的难点是这一条件的转化.11、C【解析】分别求得的真假性,从而确定正确答案.【详解】对于,由于,所以为假命题,为真命题.对于,在三角形中,,由正弦定理得,所以为真命题,为假命题.所以为真命题,、、为假命题.故选:C12、B【解析】利用基本初等函数的导数和复合函数的导数,依次分析即得解【详解】选项A,,错误;选项B,,正确;选项C,,错误;选项D,,错误故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析得都在以为焦点的椭球上,再利用椭球的性质得到,化简即得解.【详解】解:因为,所以都在以为焦点椭球上,由椭球的性质得,是垂直椭球焦点所在直线的弦,的最大值为,此时共面且过中点,即故实数的取值范围为.故答案为:14、①.②.【解析】(1)利用直译法直接求出P点的轨迹(2)先利用阿氏圆的定义将转化为P点到另一个定点的距离,然后结合抛物线的定义容易求得的最小值【详解】设P(x,y),由阿氏圆的定义可得即化简得则设则由抛物线的定义可得当且仅当四点共线时取等号,的最小值为故答案为:【点睛】本题考查了抛物线的定义及几何性质,同时考查了阿氏圆定义的应用.还考查了学生利用转化思想、方程思想等思想方法解题的能力.难度较大15、【解析】利用待定系数法列出关于的方程解出即可得结果.【详解】设的标准方程为,则解得所以的标准方程为故答案为:.16、.【解析】由求导公式求出导数,再把代入求出切线的斜率,代入点式方程化为一般式即可.【详解】由题意得,∴在点处的切线的斜率是,则在点处的切线方程是,即.【点睛】本题考查导数的几何意义.注意区分“在某点处的切线”与“过某点的切线”,前者“某点”是切点,后者“某点”不一定是切点.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用双曲线定义,根据点到一个焦点的距离求点到另一个焦点的距离即可;(2)先根据定义得到,两边平方求得,即证,,再计算直角三角形面积即可.【小问1详解】是双曲线的两个焦点,则,点M到它的一个焦点的距离等于10,设点到另一个焦点的距离为,则由双曲线定义可知,,解得或(舍去)即点到另一个焦点的距离为;【小问2详解】P是双曲线左支上的点,则,则,而,所以,即,所以为直角三角形,,所以.18、(1)证明见解析;(2)证明见解析.【解析】(1)根据题意,利用中位线定理和线段成比例,先证明,进而证明问题;(2)先证明平面,平面,进而证明点P在两个平面的交线上,然后证得结论.【小问1详解】连接分别是的中点,.在中,.所以四点共面.【小问2详解】,所以,又平面平面,同理:,平面平面,为平面与平面的一个公共点.又平面平面,即三点共线.19、(1)答案见解析(2)证明见解析【解析】(1)求导得,进而分和两种情况讨论求解即可;(2)根据题意证明,进而令,再结合(1)得,研究函数的性质得,进而得时,,即不等式成立.【小问1详解】解:函数的定义域为,,∴当时,在上恒成立,故函数在区间上单调递增;当时,由得,由得,即函数在区间上单调递增,在上单调递减;综上,当时,在区间上单调递增;当时,在区间上单调递增,在上单调递减;【小问2详解】证明:因为时,证明,只需证明,由(1)知,当时,函数在区间上单调递增,在上单调递减;所以.令,则,所以当时,,函数单调递减;当时,,函数单调递增,所以.所以时,,所以当时,20、(1)(2)【解析】(1)由已知直接可得;(2)联立方程组求出A,两点坐标,再由两点间距离公式可得.【小问1详解】∵椭圆的中心在原点,焦点为,且长轴长为4,,,,故椭圆的方程为;【小问2详解】设,联立解得和,,∴弦长.21、(1)或;(2)或.【解析】(1)由圆的方程可得圆心和半径,当直线斜率不存在时,知与圆相切,满足题意;当直线斜率存在时,利用圆心到直线距离等于半径可构造方程求得,由此可得方程;(2)当直线斜率不存在时,知与圆相切,不合题意;当直线斜率存在时,利用垂径定理可构造方程求得,由此可得方程.【小问1详解】由圆的方程知:圆心,半径;当直线斜率不存在,即时,与圆相切,满足题意;当直线斜率存在时,设,即,圆心到直线距离,解得:,,即;综上所述:直线方程为或;【小问2详解】当直线斜率不存在,即时,与圆相切,不合题意;当直线斜率存在时,设,即,圆心到直线距离,,解得:或,直线的方程为或.22、(1)函数的单调性见解析;(2)证明见解析.【解析】(1)求出函数的导数,按a值分类讨论判断的正负作答.(2)将分别代入计算化简变形,再对所证不等式作等价

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论