




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市海淀区重点初中2024届数学高二上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四面体中,点G是的重心,设,,,则()A. B.C. D.2.定义在R上的偶函数在上单调递增,且,则满足的x的取值范围是()A. B.C. D.3.执行如图所示的程序框图,若输入的的值为3,则输出的的值为()A.3 B.6C.9 D.124.已知圆M的圆心在直线上,且点,在M上,则M的方程为()A. B.C. D.5.抛物线的焦点到准线的距离()A.4 B.C.2 D.6.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为()A. B.C. D.7.已知等差数列的前项和为,若,则()A B.C. D.8.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.9.设等比数列的前项和为,若,,则()A.66 B.65C.64 D.6310.某学校的校车在早上6:30,6:45,7:00到达某站点,小明在早上6:40至7:10之间到达站点,且到达的时刻是随机的,则他等车时间不超过5分钟的概率是()A. B.C. D.11.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人与下三人等,问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得之和与丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此为等差数列,问五人各得多少钱?”(“钱”是古代一种重量单位),这个问题中戊所得为()A.钱 B.钱C.钱 D.钱12.已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.① B.①②C.③ D.①③二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左、右焦点分别为,若椭圆上的点P满足轴,,则该椭圆的离心率为___________14.椭圆的弦被点平分,则这条弦所在的直线方程是________15.已知数列中,,且数列为等差数列,则_____________.16.命题“,”是真命题,则的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的单调区间;(2)求函数在区间上的最大值与最小值.18.(12分)已知函数,其中(1)讨论的单调性;(2)若不等式对一切恒成立,求实数k的最大值19.(12分)如图,正方体的棱长为2,点为的中点.(1)求直线与平面所成角的正弦值;(2)求点到平面的距离.20.(12分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.21.(12分)已知命题:方程有实数解,命题:,.(1)若是真命题,求实数的取值范围;(2)若为假命题,且为真命题,求实数的取值范围.22.(10分)已知甲射击的命中率为0.7.乙射击的命中率为0.8,甲乙两人的射击互相独立.求:(1)甲乙两人同时击中目标的概率;(2)甲乙两人中至少有一个人击中目标的概率;(3)甲乙两人中恰有一人击中目标的概率
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B2、B【解析】,再根据函数的奇偶性和单调性可得或,解之即可得解.【详解】解:,由题意可得或即或,解得或故选:B.3、A【解析】模拟执行程序框图,根据输入数据,即可求得输出数据.【详解】当时,不满足,故,即输出的的值为.故选:.4、C【解析】由题设写出的中垂线,求其与的交点即得圆心坐标,再应用两点距离公式求半径,即可得圆的方程.【详解】因为点,在M上,所以圆心在的中垂线上由,解得,即圆心为,则半径,所以M的方程为故选:C5、A【解析】写出抛物线的标准方程,即可确定焦点到准线的距离.【详解】由题设,抛物线的标准方程为,则,∴焦点到准线的距离为4.故选:A.6、C【解析】由几何关系先求出一个正四面体的高,再结合锥体体积公式即可求解正八面体的体积.【详解】如图,设底面中心为,连接,由几何关系知,,则正八面体体积为.故选:C7、B【解析】利用等差数列的性质可求得的值,再结合等差数列求和公式以及等差中项的性质可求得的值.【详解】由等差数列的性质可得,则,故.故选:B.8、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.9、B【解析】根据等比数列前项和的片段和性质求解即可.【详解】解:由题知:,,,所以,,成等比数列,即5,15,成等比数列,所以,解得.故选:B.10、B【解析】求出小明等车时间不超过5分钟能乘上车的时长,即可计算出概率.【详解】6:40至7:10共30分钟,小明同学等车时间不超过5分钟能乘上车只能是6:40至6:45和6:55至7:00到站,共10分钟,所以所求概率为.故选:B11、D【解析】根据题意将实际问题转化为等差数列的问题即可解决【详解】解:由题意,可设甲、乙、丙、丁、戊五人分得的钱分别为,,,,则,,,,成等差数列,设公差为,整理上面两个算式,得:,解得,故选:12、D【解析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①正确,当时,曲线的方程化为,此时当时,曲线的方程化为,此时所以曲线图形是两个抛物线的部分组成的,不是椭圆,故②不正确.当,时,设,设,则,(当且仅当或时等号成立)所以在第一象限内,椭圆的图形在曲线的上方.根据曲线和椭圆的的对称性可得椭圆的图形在曲线的外部(四个顶点在曲线上)所以曲线围成区域的面积小于椭圆围成区域的面积,故③正确.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意分析为直角三角形,得到关于a、c的齐次式,即可求出离心率.【详解】设,则.由椭圆的定义可知:,所以.所以因轴,所以为直角三角形,由勾股定理得:,即,即,所以离心率.故答案为:14、2x+4y-3=0【解析】设弦端点为,又A,B在椭圆上,、即直线AB的斜率为直线AB的方程为,.15、【解析】由题意得:考点:等差数列通项16、【解析】依题意可得,是真命题,参变分离得到在上有解,再利用构造函数利用函数的单调性计算可得.【详解】,等价于在上有解设,,则在上单调递减,在上单调递增,又,,所以,即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为;单调减区间为和;(2);.【解析】(1)求出导函数,令,求出单调递增区间;令,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解.【详解】1函数的定义域是R,,令,解得令,解得或,所以的单调递增区间为,单调减区间为和;2由在单调递减,在单调递增,所以,而,,故最大值是.18、(1)答案见解析(2)【解析】(1)先对函数求导,然后分和讨论导数的正负,从而可求出函数的单调区间,(2)由题意得恒成立,构造函数,利用导数求出其最小值即可【小问1详解】由,得当时,恒成立,∴在上单调递增当时,令,得,得,∴在上单调递增,在上单调递减综上所述:当时,在上单调递增;当时,在上单调递增,在上单调递减【小问2详解】依题意得对一切恒成立,即令,则令,则在上单调递增,而当时,,即;当时,,即∴在上单调递减,在上单调递增∴∴,即k的最大值为19、(1)(2)【解析】(1)建立空间直角坐标系,求出平面的一个法向量及,利用向量的夹角公式即可得解;(2)直接利用向量公式求解即可【小问1详解】解:以点作坐标原点,建立如图所示的空间直角坐标系,则,0,,,2,,,0,,,0,,设平面的一个法向量为,又,则,则可取,又,设直线与平面的夹角为,则,直线与平面的正弦值为;【小问2详解】解:因为所以点到平面的距离为,点到平面的距离为20、(1)(2)反比例函数模型拟合效果更好,产量为10千件时每件产品的非原料成本约为11元,(3)见解析【解析】(1)令,则可转化为,求出样本中心,回归方程的斜率,转化求回归方程即可,(2)求出与的相关系数,通过比较,可得用反比例函数模型拟合效果更好,然后将代入回归方程中可求结果(3)利用已知数据求出样本标准差s,从而可得非原料成本y服从正态分布,再计算,然后各个数据是否在此范围内,从而可得结论【小问1详解】令,则可转化为,因为,所以,所以,所以,所以y关于x的回归方程为【小问2详解】与的相关系数为因为,所以用反比例函数模型拟合效果更好,把代入回归方程得(元),所以产量为10千件时每件产品的非原料成本约为11元【小问3详解】因为,所以,因为样本标准差为,所以,所以非原料成本y服从正态分布,所以因为在之外,所以需要此非原料成本数据寻找出现异样成本的原因21、(1)或;(2)【解析】(1)由方程有实数根则,可求出实数的取值范围.(2)为真命题,即从而得出的取值范围,由(1)可得出为假命题时实数的取值范围.即可得出答案.【详解】解:(1)方程有实数解得,,解之得或;(2)为假命题,则,为真命题时,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃各地区2024-2025年中考化学模拟试题汇编-计算题
- 2025年消防安全设施维护与检测规范操作规范操作规范操作规范操作规范操作规范操作考试题库
- 2025年公共浴室淋浴间热水供应保障及使用要求
- 2025年监理工程师土建模拟试卷(质量控制与进度管理)实战演练解析
- 德语TestDaF写作高分秘籍!2025年模板卷及图表描述详解
- 2025中考化学计算题专项训练卷:解析与解题策略全解析
- java面试题及答案突击班
- 广东省韶关市2025届高三上学期期中考试试题(语文扫描版)
- 朴朴java面试题及答案
- 八年级上学期期中考试物理模拟试卷(一)(人教版)
- 2025解题觉醒邓诚数学(名师大招册)
- 第四单元第一课 多姿多彩的乐音世界-《唱脸谱》 课件 2024-2025学年湘艺版(2024)初中音乐七年级下册
- 给小朋友科普化学小知识
- 中医专科护士进修汇报
- 9.2 法律保障生活课件(共13张)-2024-2025学年统编版道德与法治七年级下册
- 《装备测试性工作要求GJB 2547B-2024》知识培训
- 北非旅游地理
- 体重管理培训课件
- EPC工程合作框架协议书范本
- 人教版八年级英语下册导学案(全册 共10个单元)
- 外科学-上肢骨、关节损伤
评论
0/150
提交评论