河北省魏县第五中学2023年高二数学第一学期期末检测模拟试题含解析_第1页
河北省魏县第五中学2023年高二数学第一学期期末检测模拟试题含解析_第2页
河北省魏县第五中学2023年高二数学第一学期期末检测模拟试题含解析_第3页
河北省魏县第五中学2023年高二数学第一学期期末检测模拟试题含解析_第4页
河北省魏县第五中学2023年高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省魏县第五中学2023年高二数学第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的解集是,则等于()A.-14 B.-6C.6 D.142.给出下列结论:①如果数据的平均数为3,方差为0.2,则的平均数和方差分别为14和1.8;②若两个变量的线性相关性越强,则相关系数r的值越接近于1.③对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是().A.3 B.2C.1 D.03.已知等差数列满足,则其前10项之和为()A.140 B.280C.68 D.564.如图,是边长为4的等边三角形的中位线,将沿折起,使得点A与P重合,平面平面,则四棱锥外接球的表面积是()A. B.C. D.5.已知圆M的圆心在直线上,且点,在M上,则M的方程为()A. B.C. D.6.如图,平行六面体中,与的交点为,设,则选项中与向量相等的是()A. B.C. D.7.等差数列中,,,则()A.1 B.2C.3 D.48.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.9.在等比数列中,,,则等于()A.90 B.30C.70 D.4010.将一张坐标纸折叠一次,使点与重合,求折痕所在直线是()A. B.C. D.11.已知直线l的方向向量,平面α的一个法向量为,则直线l与平面α的位置关系是()A.平行 B.垂直C.在平面内 D.平行或在平面内12.已知,满足,则的最小值为()A.5 B.-3C.-5 D.-9二、填空题:本题共4小题,每小题5分,共20分。13.已知是双曲线的左、右焦点,若为双曲线上一点,且,则__________.14.已知数列中,,,则_______.15.某学校为了获得该校全体高中学生的体有锻炼情况,按照男、女生的比例分别抽样调查了55名男生和45名女生的每周锻炼时间,通过计算得到男生每周锻炼时间的平均数为8小时,方差为6;女生每周锻炼时间的平均数为6小时,方差为8.根据所有样本的方差来估计该校学生每周锻炼时间的方差为________16.若直线与直线平行,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的圆心在直线上,与轴正半轴相切,且被直线:截得的弦长为.(1)求圆的方程;(2)设点在圆上运动,点,且点满足,记点的轨迹为.①求的方程,并说明是什么图形;②试探究:在直线上是否存在定点(异于原点),使得对于上任意一点,都有为一常数,若存在,求出所有满足条件的点的坐标,若不存在,说明理由.18.(12分)如图,底面是矩形的直棱柱中,;(1)求证:平面;(2)求直线与平面所成角的大小;19.(12分)已知函数,其中(1)当时,求函数的单调区间;(2)①若恒成立,求的最小值;②证明:,其中.20.(12分)如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围21.(12分)已知椭圆的左、右焦点分别为,,且椭圆过点,离心率,为坐标原点,过且不平行于坐标轴的动直线与有两个交点,,线段的中点为.(1)求的标准方程;(2)记直线斜率为,直线的斜率为,证明:为定值;(3)轴上是否存在点,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.22.(10分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由一元二次不等式的解集,结合根与系数关系求参数a、b,即可得.【详解】∵的解集为,∴-5和2为方程的两根,∴有,解得,∴.故选:A.2、B【解析】对结论逐一判断【详解】对于①,则的平均数为,方差为,故①正确对于②,若两个变量的线性相关性越强,则相关系数r的绝对值越接近于1,故②错误对于③,对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为,故③正确故正确结论为2个故选:B3、A【解析】根据等差数列的性质,可得,结合等差数列的求和公式,即可求解.【详解】由题意,等差数列满足,根据等差数列的性质,可得,所以数列的前10项和为.故选:A.4、A【解析】分别取的中点,易得,则点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,设外接球的半径为,,利用勾股定理求得半径,从而可得出答案.【详解】解:分别取的中点,在等边三角形中,,是中位线,则都是等边三角形,所以,所以点为四边形的外接圆的圆心,则四棱锥外接球的球心在过点且垂直平面的直线上,设球心为,由为的中点,所以,因为平面平面,且平面平面,平面,所以平面,则,设外接球半径为,,,则,,所以,解得,所以,所以四棱锥外接球的表面积是.故选:A.第II卷5、C【解析】由题设写出的中垂线,求其与的交点即得圆心坐标,再应用两点距离公式求半径,即可得圆的方程.【详解】因为点,在M上,所以圆心在的中垂线上由,解得,即圆心为,则半径,所以M的方程为故选:C6、B【解析】利用空间向量加减法、数乘的几何意义,结合几何体有,进而可知与向量相等的表达式.【详解】连接,如下图示:,.故选:B7、B【解析】根据给定条件利用等差数列性质直接计算作答.【详解】在等差数列中,因,,而,于是得,解得,所以.故选:B8、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A9、D【解析】根据等比数列的通项公式即可求出答案.【详解】设该等比数列的公比为q,则,则.故选:D10、D【解析】设,,则折痕所在直线是线段AB的垂直平分线,故求出AB中点坐标,折痕与直线AB垂直,进而求出斜率,用点斜式求出折痕所在直线方程.【详解】,,所以与的中点坐标为,又,所以折痕所在直线的斜率为1,故折痕所在直线是,即.故选:D11、D【解析】根据题意,结合线面位置关系的向量判断方法,即可求解.【详解】根据题意,因为,所以,所以直线l与平面α的位置关系是平行或在平面内故选:D12、D【解析】作出可行域,作出目标函数对应的直线,平移该直线可得最优解【详解】解:作出可行域,如图内部(含边界),作直线,在中,,当直线向下平移时,增大,因此把直线向上平移,当直线过点时,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、17【解析】根据双曲线的定义求解【详解】由双曲线方程知,,,又.,所以(1舍去)故答案为:1714、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:15、【解析】先求出100名学生每周锻炼的平均时间,然后再求这100名学生每周锻炼时间的方差,从而可估计该校学生每周锻炼时间的方差【详解】由题意可得55名男生和45名女生的每周锻炼时间的平均数为小时,因为55名男生每周锻炼时间的方差为6;45名女生每周锻炼时间的方差为8,所以这100名学生每周锻炼时间的方差为,所以该校学生每周锻炼时间的方差约为,故答案为:16、【解析】根据直线平行的充要条件即可求出【详解】当时,显然两直线不平行,所以依题有,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①,圆;②存在,.【解析】(1)设圆心,根据题意,得到半径,根据弦长的几何表示,由题中条件,列出方程求解,得出,从而可得圆心和半径,进而可得出结果;(2)①设,根据向量的坐标表示,由题中条件,得到,代入圆的方程,即可得出结果;②假设存在一点满足(其中为常数),设,根据题意,得到,再由①,得到,两式联立化简整理,得到,推出,求解得出,即可得出结果.【详解】(1)设圆心,则由圆与轴正半轴相切,可得半径.∵圆心到直线的距离,由,解得.故圆心为或,半径等于.∵圆与轴正半轴相切圆心只能为故圆的方程为;(2)①设,则:,,∵点A在圆上运动即:所以点的轨迹方程为,它是一个以为圆心,以为半径的圆;②假设存在一点满足(其中为常数)设,则:整理化简得:,∵在轨迹上,化简得:,所以整理得,解得:;存在满足题目条件.【点睛】本题主要考查求圆的方程,考查圆中的定点问题,涉及圆的弦长公式等,属于常考题型.18、(1)证明见解析(2)【解析】(1)通过证明和可得答案;(2)连接,则为直线与平面所成角的平面角,在直角三角形中计算即可.【小问1详解】棱柱为直棱柱,面,又面,又直棱柱的底面是矩形,,又,平面,平面,平面;【小问2详解】连接,面,则为直线与平面所成角的平面角在直角三角形中,则,,所以直线与平面所成角的大小为.19、(1)单调递增区间为,单调递减区间为(2)①1;②证明见解析【解析】(1)求出函数的导数,在定义域内,解关于导函数的不等式,求出函数的单调区间即可;(2)①分离参数得,令,利用函数的单调性求出的最大值即可;②由①知:,时取“=”,令,即,最后累加即可.【小问1详解】由已知条件得,其中的定义域为,则,当时,,当时,,综上所述可知:的单调递增区间为,单调递减区间为;【小问2详解】①由恒成立,即恒成立,令,则,当时,,当时,,∴在上单调递增,上单调递减,∴,∴的最小值为1.②由①知:,时取“=”,令,得,∴,当时,.20、(1)1(2)【解析】(1)以AB,AD,为x,y,z轴正向建立直角坐标系,利用空间向量法求出平面的法向量,结合点到平面的距离的向量求法计算即可;(2)设点,,进而得出的坐标,利用向量的数量积即可列出线面角正弦值的表达式,结合二次函数的性质即可得出结果.【小问1详解】由题意,分别以AB,AD,为x,y,z轴正向建立直角坐标系,于是,,,,,设平面法向量所以,解得,,令得,,设点Q到平面的距离为d,【小问2详解】由(1)可知,平面的法向量,由P点在线段AC上运动可设点,于是,,所以,的取值范围是21、(1);(2)证明见解析;(3)不存在,理由见解析.【解析】(1)由椭圆所过点及离心率,列方程组,再求解即得;(2)设出点A,B坐标并列出它们满足的关系,利用点差法即可作答;(3)设直线的方程,联立直线与椭圆的方程,借助韦达定理求得,,再结合为等边三角形的条件即可作答.【详解】(1)显然,半焦距c有,即,则,所以椭圆的标准方程为;(2)设,,,,由(1)知,,两式相减得,即,而弦的中点,则有,所以;(3)假定存在符合要求的点P,由(1)知,设直线的方程为,由得:,则,,于是得,从而得点,,因为等边三角形,即有,,因此,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论