黑龙江省大庆中学2023年高二数学第一学期期末监测模拟试题含解析_第1页
黑龙江省大庆中学2023年高二数学第一学期期末监测模拟试题含解析_第2页
黑龙江省大庆中学2023年高二数学第一学期期末监测模拟试题含解析_第3页
黑龙江省大庆中学2023年高二数学第一学期期末监测模拟试题含解析_第4页
黑龙江省大庆中学2023年高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省大庆中学2023年高二数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.2.青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是()A. B.C. D.3.若直线被圆截得的弦长为4,则的最大值是()A. B.C.1 D.24.如图给出的是一道典型的数学无字证明问题:各矩形块中填写的数字构成一个无穷数列,所有数字之和等于1.按照图示规律,有同学提出了以下结论,其中正确的是()A.由大到小的第八个矩形块中应填写的数字为B.前七个矩形块中所填写的数字之和等于C.矩形块中所填数字构成的是以1为首项,为公比的等比数列D.按照这个规律继续下去,第n-1个矩形块中所填数字是5.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆6.某学校的校车在早上6:30,6:45,7:00到达某站点,小明在早上6:40至7:10之间到达站点,且到达的时刻是随机的,则他等车时间不超过5分钟的概率是()A. B.C. D.7.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C.与相等 D.8.如图,椭圆的右焦点为,过与轴垂直的直线交椭圆于第一象限的点,点关于坐标原点的对称点为,且,,则椭圆方程为()A. B.C. D.9.在单调递减的等比数列中,若,,则()A.9 B.3C. D.10.设实数x,y满足约束条件则的最小值()A.5 B.C. D.811.给出下列判断,其中正确的是()A.三点唯一确定一个平面B.一条直线和一个点唯一确定一个平面C.两条平行直线与同一条直线相交,三条直线在同一平面内D.空间两两相交的三条直线在同一平面内12.已知双曲线,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图:二面角等于,是棱上两点,分别在半平面内,,则的长等于__________.14.定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.15.已知函数有且仅有两个不同的零点,则实数的取值范围是__________.16.某市开展“爱我内蒙,爱我家乡”摄影比赛,9位评委给参赛作品A打出的分数如茎叶图所示,记分员算得平均分为91,复核员在复核时,发现一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)年月日,中国选手杨倩在东京奥运会女子米气步枪决赛由本得冠军,为中国代表团揽入本届奥运会第一枚金牌.受奥运精神的鼓舞,某射击俱乐部组织名射击爱好者进行一系列的测试,并记录他们的射击得分(单位:分),将所得数据整理得到如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计该名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);(2)若采用分层抽样的方法,从得分高于分的射击爱好者中随机抽取人调查射击技能情况,再从这人中随机选取人进行射击训练,求这人中至少有人的分数高于分的概率.18.(12分)如图,在四棱锥中,平面,底面为菱形,且,,分别为,的中点(Ⅰ)证明:平面;(Ⅱ)点在棱上,且,证明:平面19.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l方程20.(12分)已知等差数列满足:,,数列的前n项和为(1)求及;(2)设是首项为1,公比为3的等比数列,求数列的前项和21.(12分)二项式展开式中第五项的二项式系数是第三项系数的4倍.求:(1);(2)展开式中的所有的有理项.22.(10分)如图,在四棱锥中,底面是矩形,,,,,为的中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于2、B【解析】依题意该程序框图是统计这12名青少年视力小于等于的人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于的人数,由茎叶图可知视力小于等于的有5人,故选:B3、A【解析】根据弦长求得的关系式,结合基本不等式求得的最大值.【详解】圆的圆心为,半径为,所以直线过圆心,即,由于为正数,所以,当且仅当时,等号成立.故选:A4、B【解析】根据题意可得矩形块中的数字从大到小形成等比数列,根据等比数列的通项公式可求.【详解】设每个矩形块中的数字从大到小形成数列,则可得是首项为,公比为的等比数列,,所以由大到小的第八个矩形块中应填写的数字为,故A错误;前七个矩形块中所填写的数字之和等于,故B正确;矩形块中所填数字构成的是以为首项,为公比的等比数列,故C错误;按照这个规律继续下去,第个矩形块中所填数字是,故D错误.故选:B.5、A【解析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.6、B【解析】求出小明等车时间不超过5分钟能乘上车的时长,即可计算出概率.【详解】6:40至7:10共30分钟,小明同学等车时间不超过5分钟能乘上车只能是6:40至6:45和6:55至7:00到站,共10分钟,所以所求概率为.故选:B7、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D8、C【解析】连结,设,则,,由可求出,进而可求出,得出椭圆方程.【详解】由题意设椭圆的方程:,设左焦点为,连结,由椭圆的对称性易得四边形为平行四边形,由得,又,设,则,,又,解得,又由,,解得,,,则椭圆的方程为.故选:C.【点睛】关键点睛:本题考查了椭圆的标准方程求解及椭圆的简单几何性质,在求解椭圆标准方程时,关键是求解基本量,,.9、A【解析】利用等比数列的通项公式可得,结合条件即求.【详解】设等比数列的公比为,则由,,得,解得或,又单调递减,故,.故选:A.10、B【解析】做出,满足约束条件的可行域,结合图形可得答案.【详解】做出,满足约束条件可行域如图,化为,平移直线,当直线经过点时有最小值,由得,所以的最小值为.故选:B.11、C【解析】根据确定平面的条件可对每一个选项进行判断.【详解】对A,如果三点在同一条直线上,则不能确定一个平面,故A错误;对B,如果这个点在这条直线上,就不能确定一个平面,故B错误;对C,两条平行直线确定一个平面,一条直线与这两条平行直线都相交,则这条直线就在这两条平行直线确定的一个平面内,故这三条直线在同一平面内,C正确;对D,空间两两相交的三条直线可确定一个平面,也可确定三个平面,故D错误.故选:C12、D【解析】由双曲线的方程及双曲线的离心率即可求解.【详解】解:因为双曲线,所以,所以双曲线的离心率,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,二面角等于,根据,结合向量的运算,即可求解.【详解】由题意,二面角等于,可得向量,,因为,可得,所以.故答案为:14、【解析】设,求出其导数结合条件得出在上单调递减,将问题转化为求解,由的单调性可得答案.【详解】设,则由,则所以在上单调递减.又由,即,即,所以故答案为:15、【解析】函数有两个不同零点即y=a与g(x)=图像有两个交点,画出近似图象即得a的范围﹒【详解】∵函数有且仅有两个不同的零点,令,则y=a与g(x)=图像有两个交点,∵,∴当时,,单调递减,当时,,单调递增,∴当时,,作出函数与的图象,∴当时,y=a与g(x)有两个交点﹒故答案为:﹒16、1【解析】由平均数列出方程,求出x的值.【详解】由题意得:,解得:.故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),平均分为;(2).【解析】(1)利用频率直方图中所有矩形面积之和为可求得的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全部相加可得平均成绩;(2)分析可知所抽取的人中,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:根据频率分布直方图得到,解得.这组样本数据平均数为.【小问2详解】解:根据频率分布直方图得到,分数在、内的频率分别为、,所以采用分层抽样的方法从样本中抽取的人,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,记“人中至少有人的分数高于分”为事件.则所有的基本事件有、、、、、、、、、、、、、、,共种.事件包含的基本事件有、、、、、、、、,共种,所以.18、(Ⅰ)证明见解析(Ⅱ)证明见解析【解析】(Ⅰ)证明和得到平面.(Ⅱ)根据相似得到证明平面.【详解】(Ⅰ)如图,连接.∵底面为菱形,且,∴三角形正三角形.∵为的中点,∴.又∵平面,平面,∴.∵,平面,∴平面.(Ⅱ)连接交于点,连接.∵为的中点,∴在底面中,,∴.∴,∴在三角形中,.又∵平面,平面,∴平面.【点睛】本题考查了线面垂直和线面平行,意在考查学生的空间想象能力和推断能力.19、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详解】设直线,,联立,化简得,则,解得,,由弦长公式知,,解得,故直线或20、(1);(2)【解析】(1)先根据已知求出,再求及.(2)先根据已知得到,再利用分组求和求数列的前项和.【详解】(1)设等差数列的公差为d,因为,,所以,解得,所以;==.(2)由已知得,由(1)知,所以,=.【点睛】(1)本题主要考查等差数列的通项和前n项和求法,考查分组求和和等比数列的求和公式,意在考查学生对这些知识的掌握水平和计算推理能力.(2)有一类数列,它既不是等差数列,也不是等比数列,但是数列是等差数列或等比数列或常见特殊数列,则可以将这类数列适当拆开,可分为几个等差、等比数列或常见的特殊数列,然后分别求和,再将其合并即可.这叫分组求和法.21、(1)6;(2),,【解析】(1)先得到二项展开式的通项,再根据第五项的二项式系数是第三项系数的4倍,建立方程求解.(2)根据(1)的通项公式求解.【详解】(1)二项展开式的通项.依题意得,,所以,解得.(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论