版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古呼伦贝尔市莫旗2024届中考试题猜想数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若代数式,,则M与N的大小关系是()A. B. C. D.2.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.33.在半径等于5cm的圆内有长为cm的弦,则此弦所对的圆周角为A.60° B.120° C.60°或120° D.30°或120°4.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:①若C,O两点关于AB对称,则OA=;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为π.其中正确的是()A.①② B.①②③ C.①③④ D.①②④5.△ABC在正方形网格中的位置如图所示,则cosB的值为()A. B. C. D.26.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3,1) B.(3,2) C.(2,3) D.(1,3)7.近似数精确到()A.十分位 B.个位 C.十位 D.百位8.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A. B. C. D.9.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米10.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=160011.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.12.化简的结果是()A.1 B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).14.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是_____.15.分解因式:2x3﹣4x2+2x=_____.16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是______.17.如图,已知O为△ABC内一点,点D、E分别在边AB和AC上,且,DE∥BC,设、,那么______(用、表示).18.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.求,,的值;求四边形的面积.20.(6分)如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.(1)求证:≌;(2)当时,求四边形AECF的面积.21.(6分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求A、B两种钢笔每支各多少元?(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?22.(8分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.(1)若a+e=0,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:a+1a-2(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是.23.(8分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.24.(10分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.25.(10分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.(1)求证:AB为⊙C的切线.(2)求图中阴影部分的面积.26.(12分)已知:在⊙O中,弦AB=AC,AD是⊙O的直径.求证:BD=CD.27.(12分)在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.(1)求证:BP是⊙O的切线;(2)若sin∠PBC=,AB=10,求BP的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】∵,∴,∴.故选C.2、D【解题分析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.3、C【解题分析】
根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【题目详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【题目点拨】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.4、D【解题分析】分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.详解:在Rt△ABC中,∵∴①若C.O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∴当OC经过点E时,OC最大,则C.O两点距离的最大值为4;所以②正确;③如图2,当时,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的则:所以④正确;综上所述,本题正确的有:①②④;故选D.点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.5、A【解题分析】
解:在直角△ABD中,BD=2,AD=4,则AB=,则cosB=.故选A.6、D【解题分析】
解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【题目详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.7、C【解题分析】
根据近似数的精确度:近似数5.0×102精确到十位.故选C.考点:近似数和有效数字8、D【解题分析】【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【题目详解】由二次函数的图象可知,,,当时,,的图象经过二、三、四象限,观察可得D选项的图象符合,故选D.【题目点拨】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.9、D【解题分析】
根据图中信息以及路程、速度、时间之间的关系一一判断即可.【题目详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【题目点拨】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.10、A【解题分析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.考点:一元二次方程的应用.11、B【解题分析】
连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【题目详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【题目点拨】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.12、A【解题分析】原式=•(x–1)2+=+==1,故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、A【解题分析】试题分析:由题意得:SA>SB>SC,故落在A区域的可能性大考点:几何概率14、﹣1.【解题分析】
由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解.【题目详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1.【题目点拨】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.15、2x(x-1)2【解题分析】2x3﹣4x2+2x=16、【解题分析】如图,分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D.∵△ABC为等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF,∠ACE=∠CBF.∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.设平行线间距离为d=l,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,∴tanα=tan∠BAD==.点睛:分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D,可根据ASA证明△ACE≌△CBF,设平行线间距离为d=1,进而求出AD、BD的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;17、【解题分析】
根据,DE∥BC,结合平行线分线段成比例来求.【题目详解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案为:.【题目点拨】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.18、20cm.【解题分析】
将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【题目详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【题目点拨】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1),,.(2)6【解题分析】
(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.【题目详解】解:(1)∵点在上,∴,∵点在上,且,∴.∵过,两点,∴,解得,∴,,.(2)如图,延长,交于点,则.∵轴,轴,∴,,∴,,∴.∴四边形的面积为6.【题目点拨】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.20、(1)见解析;(2)【解题分析】
(1)根据平行四边形的性质得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根据全等三角形的判定推出即可;
(2)求出△ABE是等边三角形,求出高AH的长,再求出面积即可.【题目详解】(1)证明:∵四边形ABCD是平行四边形,∴,,,∵点E、F分别是BC、AD的中点,∴,,∴,在和中,∴≌();(2)作于H,∵四边形ABCD是平行四边形,∴,,∵点E、F分别是BC、AD的中点,,∴,,∴,,∴四边形AECF是平行四边形,∵,∴四边形AECF是菱形,∴,∵,∴,即是等边三角形,,由勾股定理得:,∴四边形AECF的面积是.【题目点拨】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.21、(1)A种钢笔每只15元B种钢笔每只20元;(2)方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3)定价为33元或34元,最大利润是728元.【解题分析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得,解得:,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,∴42.4≤z<45,∵z是整数z=43,44,∴90-z=47,或46;∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,∵-4<0,∴W有最大值,∵a为正整数,∴当a=3,或a=4时,W最大,∴W最大==-4×(3-)²+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.22、(1)0;(1)a+2a+1,3【解题分析】
(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【题目详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x<1.【题目点拨】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.23、(1)答案见解析;(2).【解题分析】试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.试题解析:(1)证明:连结OD∵OD=OB∴∠ODB=∠DBO又AB=AC∴∠DBO=∠C∴∠ODB=∠C∴OD∥AC又DE⊥AC∴DE⊥OD∴EF是⊙O的切线.(2)∵AB是直径∴∠ADB=90°∴∠ADC=90°即∠1+∠2=90°又∠C+∠2=90°∴∠1=∠C∴∠1=∠3∴∴∴AD=8在Rt△ADB中,AB=10∴BD=6在又Rt△AED中,∴设BF=x∵OD∥AE∴△ODF∽△AEF∴,即,解得:x=24、(1)y=x2+2x﹣3;(2)点P坐标为(﹣1,﹣2);(3)点M坐标为(﹣1,3)或(﹣1,2).【解题分析】
(1)设平移后抛物线的表达式为y=a(x+3)(x-1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当或时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.【题目详解】(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1),∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,∴平移后抛物线的二次项系数与原抛物线的二次项系数相同,∴平移后抛物线的二次项系数为1,即a=1,∴平移后抛物线的表达式为y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),如图1,连接B,C′,与直线x=﹣1的交点即为所求点P,由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,则,解得,所以点P坐标为(﹣1,﹣2);(3)如图2,由得,即D(﹣1,1),则DE=OD=1,∴△DOE为等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴点M只能在点D上方,∵∠BOD=∠ODM=135°,∴当或时,以M、O、D为顶点的三角形△BOD相似,①若,则,解得DM=2,此时点M坐标为(﹣1,3);②若,则,解得DM=1,此时点M坐标为(﹣1,2);综上,点M坐标为(﹣1,3)或(﹣1,2).【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD=135°是解题的关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提升机司机考核制度
- 律师所新人考核制度
- 班级小组课堂考核制度
- 煤矿三个一考核制度
- 消毒隔离知识培训试题(附答案)
- 团队效能提升项目摸底测评网经、个经、理顾试卷含答案
- 质量管理招聘笔试题及解答(某世界500强集团)附答案
- 护士三基考试试题及答案含解析
- 教师招聘考试辅导真题及全真模拟试卷教育理论综合知识附答案
- 高频合肥育婴师面试题及答案
- 2026湖南衡阳日报社招聘事业单位人员16人备考题库参考答案详解
- GB 12801-2025生产过程安全基本要求
- 食堂管理内控制度
- 2025至2030中国数据分析超级计算机(DAS)行业项目调研及市场前景预测评估报告
- 口腔种植知识培训内容课件
- 展会搭建方案(3篇)
- 危重患者护理记录书写
- 小学语文数字化教学论文
- 尼康-D300S-相机说明书
- 锅炉专业英文术语
- 标准规范文件:GB-T3956-2008电缆的导体
评论
0/150
提交评论