




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市通州区西亭高级中学2024届高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数,若实数满足,则实数的取值范围是()A. B.C. D.2.已知函数,若不等式对任意的均成立,则的取值不可能是()A. B.C. D.3.在三角形中,若点满足,则与的面积之比为()A. B.C. D.4.函数的定义域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)5.如图,已知的直观图是一个直角边长是1的等腰直角三角形,那么的面积是A. B.C.1 D.6.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则7.已知一个直三棱柱的高为2,如图,其底面ABC水平放置的直观图(斜二测画法)为,其中,则此三棱柱的表面积为()A. B.C. D.8.已知角的终边过点,则()A. B.C. D.19.全称量词命题“,”的否定为()A., B.,C., D.,10.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数的最大值为____________12.函数关于直线对称,设,则________.13.在区间上随机地取一个实数,若实数满足的概率为,则________.14.若则函数的最小值为________15.若,,则________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)若不等式的解集为,求的值;(2)当时,求关于的不等式的解集17.已知函数f(x)=2cos.(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值及取得最大值时自变量x的取值集合;(3)求函数f(x)的单调增区间18.已知,,且.(1)求实数a的值;(2)求.19.已知函数,(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数的图象,求函数在区间上的值域20.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号电动汽车,在一段平坦的国道进行测试,国道限速(不含).经多次测试得到,该汽车每小时耗电量(单位:)与速度(单位:)的下列数据:01040600132544007200为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,,.(1)当时,请选出你认为最符合表格所列数据实际的函数模型,并求出相应的函数解析式;(2)现有一辆同型号汽车从地驶到地,前一段是的国道,后一段是的高速路,若已知高速路上该汽车每小时耗电量(单位:)与速度的关系是:,则如何行驶才能使得总耗电量最少,最少为多少?21.设函数,其中.(1)求函数的值域;(2)若,讨论在区间上的单调性;(3)若在区间上为增函数,求的最大值.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】由题可得函数关于对称,且在上单调递增,在上单调递减,进而可得,即得.【详解】∵函数,定义域为,又,所以函数关于对称,当时,单调递增,故函数单调递增,∴函数在上单调递增,在上单调递减,由可得,,解得,且.故选:D.2、D【解析】根据奇偶性定义和单调性的性质可得到的奇偶性和单调性,由此将恒成立的不等式化为,通过求解的最大值,可知,由此得到结果.【详解】,是定义在上的奇函数,又,为增函数,为减函数,为增函数.由得:,,整理得:,,,,的取值不可能是.故选:D.【点睛】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.3、B【解析】由题目条件所给的向量等式,结合向量的线性运算推断P、Q两点所在位置,比较两个三角形的面积关系【详解】因为,所以,即,得点P为线段BC上靠近C点的三等分点,又因为,所以,即,得点Q为线段BC上靠近B点的四等分点,所以,所以与的面积之比为,选择B【点睛】平面向量的线性运算要注意判断向量是同起点还是收尾相连的关系再使用三角形法则和平行四边形法则进行加减运算,借助向量的数乘运算可以判断向量共线,及向量模长的关系4、A【解析】根据二次根式的性质求出函数的定义域即可【详解】由题意得:解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.5、D【解析】根据斜二测画法的基本原理,将平面直观图与还原为原几何图形,利用三角形面积公式可得结果.【详解】平面直观图与其原图形如图,直观图是直角边长为的等腰直角三角形,还原回原图形后,边还原为长度不变,仍为,直观图中的在原图形中还原为长度,且长度为,所以原图形的面积为,故选D.【点睛】本题主要考查直观图还原几何图形,属于简单题.利用斜二测画法作直观图,主要注意两点:一是与轴平行的线段仍然与与轴平行且相等;二是与轴平行的线段仍然与轴平行且长度减半.6、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.7、C【解析】根据斜二测画法的“三变”“三不变”可得底面平面图,然后可解.【详解】由斜二测画法的“三变”“三不变”可得底面平面图如图所示,其中,所以,所以此三棱柱的表面积为.故选:C8、B【解析】根据三角函数的定义求出,再根据二倍角余弦公式计算可得;【详解】解:∵角的终边过点,所以,∴,故故选:B9、C【解析】由命题的否定的概念判断.否定结论,存在量词与全称量词互换.【详解】根据全称量词命题的否定是存在量词命题,可得命题“”的否定是“”故选:C.【点睛】本题考查命题的否定,属于基础题.10、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用二倍角公式将化为,利用三角函数诱导公式将化为,然后利用二次函数的性质求最值即可【详解】因为,所以当时,取到最大值.【点睛】本题考查了三角函数化简与求最值问题,属于中档题12、1【解析】根据正弦及余弦函数的对称性的性质可得的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心,即可求值.【详解】∵函数f(x)的图象关于x对称∵f(x)=3sin(ωx+φ)的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心故有则1故答案为1【点睛】本题考查了正弦及余弦函数的性质属于基础题13、1【解析】利用几何概型中的长度比即可求解.【详解】实数满足,解得,,解得,故答案为:1【点睛】本题考查了几何概率的应用,属于基础题.14、1【解析】结合图象可得答案.【详解】如图,函数在同一坐标系中,且,所以在时有最小值,即.故答案为:1.15、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)见解析.【解析】(1)根据二次不等式解集与二次函数图像的关系即可求出a的取值;(2)根据二次函数图像的性质即可分类讨论解不等式.【小问1详解】不等式即,可化为因为的解集是,所以且解得;【小问2详解】不等式即,因为,所以不等式可化为当时,即,原不等式的解集当时,即,原不等式的解集为当时即原不等式的解集.综上所述,当时,原不等式的解;当时,原不等式的解集为;当时,原不等式的解集.17、(1)(2)当时,取得最大值为.(3)【解析】(1)根据三角函数最小正周期公式求得正确答案.(2)根据三角函数最大值的求法求得正确答案.(3)利用整体代入法求得的单调递增区间.【小问1详解】的最小正周期为.【小问2详解】当时,取得最大值为.【小问3详解】由,解得,所以的单调递增区间为.18、(1)(2)【解析】(1)根据同角三角函数关系求解或,结合角所在象限求出,从而得到答案;(2)在第一问的基础上,得到正弦和余弦,进而求出正切和余弦,利用诱导公式求出答案.【小问1详解】由题意得:,解得:或因为,所以,,解得:,综上:.【小问2详解】由(1)得:,,故,,故19、(1);(2)【解析】(1)根据正弦函数的周期性和单调性即可得出答案;(2)根据周期变换和平移变换求出函数,再根据余弦函数的性质即可得出答案.【小问1详解】解:由函数,则函数f(x)的最小正周期,令,解得,所以函数f(x)的单调递增区间为;【小问2详解】解:函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的,得到,再把所得到的图象向左平移个单位长度,得到,当时,,所以,所以函数在区间上的值域为.20、(1)选择,;(2)当这辆车在国道上的行驶速度为,在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.【解析】(1)根据当时,无意义,以及是个减函数,可判断选择,然后利用待定系数法列方程求解即可;(2)利用二次函数的性质可判断在国道上的行驶速度为耗电最少,利用对勾函数的性质可判断在高速路上的行驶速度为时耗电最少,从而可得答案.【详解】(1)对于,当时,它无意义,所以不合题意;对于,它显然是个减函数,这与矛盾;故选择.根据提供的数据,有,解得,当时,.(2)国道路段长为,所用时间为,所耗电量,因为,当时,;高速路段长为,所用时间为,所耗电量为,由对勾函数的性质可知,在上单调递增,所以;故当这辆车在国道上的行驶速度为,在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境保护法律法规与企业应对
- 初中数学难点突破教学心得
- ICU重点科室防控管理流程
- 大学生护理创业大赛题库及答案解析
- 公路安全员理论考试题库及答案解析
- 菏泽内墙防火墙施工方案
- 湖北省职业技能提升培训补贴政策解析
- 工程项目联络函格式及写作指南
- 薄壁钢筋混凝土施工方案
- 施建水利工程施工方案
- 乙烯H罐出料管线火灾事故经过
- 中华民族共同体概论讲稿专家版《中华民族共同体概论》大讲堂之 第五讲 大一统与中华民族的初步形成(秦汉时期)
- 中职班干部培训内容
- 玻璃吊装安全协议书范本
- 小英雄雨来读书分享会
- DBJ04∕T 398-2019 电动汽车充电基础设施技术标准
- 【道法】认识生命 课件-2024-2025学年统编版道德与法治七年级上册
- 垃圾清运服务实施方案投标文件(技术方案)
- 2023-2024 学年高中语法专项练习单选100题-被动语态-学生版
- 2024至2030年中国会展(MICE)行业发展监测及发展趋势预测报告
- JGT 486-2015 混凝土用复合掺合料
评论
0/150
提交评论