广东省广州市从化区2024届中考五模数学试题含解析_第1页
广东省广州市从化区2024届中考五模数学试题含解析_第2页
广东省广州市从化区2024届中考五模数学试题含解析_第3页
广东省广州市从化区2024届中考五模数学试题含解析_第4页
广东省广州市从化区2024届中考五模数学试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市从化区2024学年中考五模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,以两条直线l1,l2的交点坐标为解的方程组是()A. B. C. D.2.如图,在正方形网格中建立平面直角坐标系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,13.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤4.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>05.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.56.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.7.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150° B.140° C.130° D.120°8.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△ACD:S△ACB=1:1.其中正确的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④9.已知二次函数图象上部分点的坐标对应值列表如下:x…-3-2-1012…y…2-1-2-127…则该函数图象的对称轴是()A.x=-3 B.x=-2 C.x=-1 D.x=010.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D11.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)12.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:4x2y﹣9y3=_____.14.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.15.方程的解是_________.16.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.17.若a是方程的解,计算:=______.18.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?20.(6分)先化简,再求值:,其中21.(6分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.22.(8分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.23.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).24.(10分)已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.求证:;若,,,求的长.25.(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是个平方单位.26.(12分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:成绩x分人数频率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.27.(12分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】

两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【题目详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.【题目点拨】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.2、C【解题分析】

根据A点坐标即可建立平面直角坐标.【题目详解】解:由A(0,2),B(1,1)可知原点的位置,

建立平面直角坐标系,如图,

∴C(2,-1)

故选:C.【题目点拨】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.3、D【解题分析】

①首先利用已知条件根据边角边可以证明△APD≌△AEB;

②由①可得∠BEP=90°,故BE不垂直于AE过点B作BF⊥AE延长线于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直线AE距离为BF=,故②是错误的;

③利用全等三角形的性质和对顶角相等即可判定③说法正确;

④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知条件计算即可判定;

⑤连接BD,根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【题目详解】由边角边定理易知△APD≌△AEB,故①正确;

由△APD≌△AEB得,∠AEP=∠APE=45°,从而∠APD=∠AEB=135°,

所以∠BEP=90°,

过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,

在△AEP中,由勾股定理得PE=,

在△BEP中,PB=,PE=,由勾股定理得:BE=,

∵∠PAE=∠PEB=∠EFB=90°,AE=AP,

∴∠AEP=45°,

∴∠BEF=180°-45°-90°=45°,

∴∠EBF=45°,

∴EF=BF,

在△EFB中,由勾股定理得:EF=BF=,

故②是错误的;

因为△APD≌△AEB,所以∠ADP=∠ABE,而对顶角相等,所以③是正确的;

由△APD≌△AEB,

∴PD=BE=,

可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是错误的;

连接BD,则S△BPD=PD×BE=,

所以S△ABD=S△APD+S△APB+S△BPD=2+,

所以S正方形ABCD=2S△ABD=4+.

综上可知,正确的有①③⑤.故选D.【题目点拨】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.4、C【解题分析】

首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.【题目详解】∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故选C.【题目点拨】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.5、C【解题分析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C.6、D【解题分析】

根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【题目详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【题目点拨】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.7、A【解题分析】

直接根据圆周角定理即可得出结论.【题目详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.8、D【解题分析】

①根据作图过程可判定AD是∠BAC的角平分线;②利用角平分线的定义可推知∠CAD=10°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;④利用10°角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.【题目详解】①根据作图过程可知AD是∠BAC的角平分线,①正确;②如图,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正确;③∵∠1=∠B=10°,∴AD=BD,∴点D在AB的中垂线上,③正确;④如图,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC∙CD=14AC∙AD.∴S△ABC=12AC∙BC=12AC∙32AD=3【题目点拨】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.9、C【解题分析】

由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.【题目详解】解:∵x=-2和x=0时,y的值相等,∴二次函数的对称轴为,故答案为:C.【题目点拨】本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.10、C【解题分析】试题解析:、由监测点监测时,函数值随的增大先减少再增大.故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误.故选.11、A【解题分析】

由题意可知,点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.【题目详解】由题意可知,点A与点A1关于原点成中心对称,∵点A的坐标是(﹣3,2),∴点A关于点O的对称点A'点的坐标是(3,﹣2).故选A.【题目点拨】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.12、D【解题分析】

先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【题目详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.【题目点拨】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、y(2x+3y)(2x-3y)【解题分析】

直接提取公因式y,再利用平方差公式分解因式即可.【题目详解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.14、1.1【解题分析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵点D为AB的中点,∴OD=AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.15、x=-2【解题分析】方程两边同时平方得:,解得:,检验:(1)当x=3时,方程左边=-3,右边=3,左边右边,因此3不是原方程的解;(2)当x=-2时,方程左边=2,右边=2,左边=右边,因此-2是方程的解.∴原方程的解为:x=-2.故答案为:-2.点睛:(1)根号下含有未知数的方程叫无理方程,解无理方程的基本思想是化“无理方程”为“有理方程”;(2)解无理方程和解分式方程相似,求得未知数的值之后要检验,看所得结果是原方程的解还是增根.16、6【解题分析】设这个扇形的半径为,根据题意可得:,解得:.故答案为.17、1【解题分析】

根据一元二次方程的解的定义得a2﹣3a+1=1,即a2﹣3a=﹣1,再代入,然后利用整体思想进行计算即可.【题目详解】∵a是方程x2﹣3x+1=1的一根,∴a2﹣3a+1=1,即a2﹣3a=﹣1,a2+1=3a∴故答案为1.【题目点拨】本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.18、2或2.【解题分析】

本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.【题目详解】解:当点在线段的延长线上时,如图3所示.过点作于,是正方形的对角线,,,在中,由勾股定理,得:,在和中,,,,当点在线段上时,如图4所示.过作于.是正方形的对角线,,在中,由勾股定理,得:在和中,,,,故答案为或.【题目点拨】本题主要考查了勾股定理和三角形全等的证明.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)P(抽到数字为2)=;(2)不公平,理由见解析.【解题分析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析:(1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=,乙获胜的情况有2种,P=,所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.20、;.【解题分析】

先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值.【题目详解】解:原式==把代入得:原式=.【题目点拨】本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.21、(1)见解析(2)【解题分析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.22、证明见解析.【解题分析】试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.试题解析:证明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考点:等腰三角形的性质与判定,平行线的性质23、(1)见解析;(2)75﹣a.【解题分析】

(1)连接CD,求出∠ADC=90°,根据切线长定理求出DE=EC,即可求出答案;(2)连接CD、OD、OE,求出扇形DOC的面积,分别求出△ODE和△OCE的面积,即可求出答案【题目详解】(1)证明:连接DC,∵BC是⊙O直径,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC为直径,∴AC切⊙O于C,∵过点D作⊙O的切线DE交AC于点E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:连接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的长度是a,∴扇形DOC的面积是×a×=a,∴DE、EC和弧DC围成的部分的面积S=××10+×10﹣a=75﹣a.【题目点拨】本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.24、(1)详见解析;(2)【解题分析】

(1)根据题意平分可得,从而证明即可解答(2)由(1)可知,再根据四边形是平行四边形可得,过点作延长线于点,再根据勾股定理即可解答【题目详解】(1)证明:平分又又(2)四边形是平行四边形,为等边三角形过点作延长线于点.在中,【题目点拨】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线25、(1)画图见解析;(2)画图见解析;(3)20【解题分析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1B1A2是正方形,求出边长即可求得面积.【题目详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1B1A2是正方形,AA1=,所以四边形AA1B1A2的面积为:=20,故答案为20.【题目点拨】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.26、(1)50;(2)详见解析;(3)220.【解题分析】

(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【题目详解】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【题目点拨】本题主要考查数据的收集、处理以及统计图表。27、(2)y=x2﹣4x+3;(2)①2<x3<4,②

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论