版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市重点名校2024届中考押题数学预测卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)22.如图1是某生活小区的音乐喷泉,水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为3m,此时距喷水管的水平距离为1m,在如图2所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是()A. B.C. D.3.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.4.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠55.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)33.544.5人数1132A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB7.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,508.下列命题是真命题的个数有()①菱形的对角线互相垂直;②平分弦的直径垂直于弦;③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.A.1个 B.2个 C.3个 D.4个9.下列运算正确的是()A.5ab﹣ab=4 B.a6÷a2=a4C. D.(a2b)3=a5b310.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.2二、填空题(共7小题,每小题3分,满分21分)11.不等式组的解集为,则的取值范围为_____.12.如图,已知是的高线,且,,则_________.13.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.14.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.15.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.16.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为_____.17.因式分解:a2﹣a=_____.三、解答题(共7小题,满分69分)18.(10分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.19.(5分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.20.(8分)如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.21.(10分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.22.(10分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.求的值;横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内恰有4个整点,结合函数图象,求的取值范围.23.(12分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB=.(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.24.(14分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.求证:四边形DECF是菱形.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】
首先提取公因式2a,进而利用完全平方公式分解因式即可.【题目详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【题目点拨】本题因式分解中提公因式法与公式法的综合运用.2、D【解题分析】
根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【题目详解】解:根据图象,设函数解析式为由图象可知,顶点为(1,3)∴,将点(0,0)代入得解得∴故答案为:D.【题目点拨】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.3、B【解题分析】
设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.4、B【解题分析】由内错角定义选B.5、A【解题分析】
根据众数和中位数的概念求解.【题目详解】这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选A.【题目点拨】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6、D【解题分析】
解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.7、A【解题分析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A.点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.8、C【解题分析】
根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.【题目详解】解:①菱形的对角线互相垂直是真命题;②平分弦(非直径)的直径垂直于弦,是假命题;③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;故选C.【题目点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.9、B【解题分析】
由整数指数幂和分式的运算的法则计算可得答案.【题目详解】A项,根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;B项,根据“同底数幂相除,底数不变,指数相减”可得:a6÷a2=a4,故B项正确;C项,根据分式的加法法则可得:,故C项错误;D项,根据“积的乘方等于乘方的积”可得:,故D项错误;故本题正确答案为B.【题目点拨】幂的运算法则:(1)同底数幂的乘法:(m、n都是正整数)(2)幂的乘方:(m、n都是正整数)(3)积的乘方:(n是正整数)(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)(5)零次幂:(a≠0)(6)负整数次幂:(a≠0,p是正整数).10、B【解题分析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【题目详解】解:∵△ABC绕点A顺时针旋转
60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【题目点拨】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.二、填空题(共7小题,每小题3分,满分21分)11、k≥1【解题分析】解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.故答案为k≥1.12、4cm【解题分析】
根据三角形的高线的定义得到,根据直角三角形的性质即可得到结论.【题目详解】解:∵是的高线,∴,∵,,∴.故答案为:4cm.【题目点拨】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.13、【解题分析】
由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.【题目详解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案为-.【题目点拨】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.14、3【解题分析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【题目详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE==3,∴AB=3,故答案为3.【题目点拨】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.15、200【解题分析】
先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.【题目详解】解:∵⊙O的直径为1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC===300mm,∴CD=OD-OC=500-300=200(mm).
答:水的最大深度为200mm.故答案为:200【题目点拨】本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.16、1.【解题分析】连结AD,过D点作DG∥CM,∵,△AOC的面积是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=1,故答案为:1.17、a(a﹣1)【解题分析】
直接提取公因式a,进而分解因式得出答案【题目详解】a2﹣a=a(a﹣1).故答案为a(a﹣1).【题目点拨】此题考查公因式,难度不大三、解答题(共7小题,满分69分)18、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.【解题分析】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,则即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.【题目详解】(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函数的表达式为:①;(2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,∵OC∥DF,∴OF=5OA=5,故点D的坐标为(﹣5,6),将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:即直线AD的表达式为:y=﹣x+1,(3)设点E坐标为则点M坐标为则∵故S△ACE有最大值,当x=﹣2时,最大值为;(4)存在,理由:①当AP为平行四边形的一条边时,如下图,设点D的坐标为将点A向左平移2个单位、向上平移4个单位到达点P的位置,同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,则点Q的坐标为将点Q的坐标代入①式并解得:②当AP为平行四边形的对角线时,如下图,设点Q坐标为点D的坐标为(m,n),AP中点的坐标为(0,2),该点也是DQ的中点,则:即:将点D坐标代入①式并解得:故点D的横坐标为:或或.【题目点拨】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.19、(1)1<x<3或x<0;(2)证明见解析.【解题分析】
(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;再根据图像直接写出不等式的解集;(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H,△AGC∽△BHA,设B(m,)、C(n,),根据对应线段成比例即可得出mn=-9,联立,得,根据根与系数的关系得,由此得出为定值.【题目详解】解:(1)将B(3,1)代入,∴m=3,,将B(3,1)代入,∴,,∴,∴不等式的解集为1<x<3或x<0(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H,则△AGC∽△BHA,设B(m,)、C(n,),∵,∴,∴,∴,∴mn=-9,联立∴,∴∴,∴为定值.【题目点拨】此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.20、(1)见解析(2)2【解题分析】解:(1)证明:连接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半径,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直径为2..(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论.(2)利用含2的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.21、(1)①证明见解析;②25;(2)为或50+1.【解题分析】
(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.【题目详解】(1)、①证明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=AB=5,∵点F是AB的中点,∴AF=AB=5,∴AC=AF,∵△ADE是等边三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE,∴△AEF≌△ADC(SAS);②∵△AEF≌△ADC,∴∠AEF=∠C=90°,EF=CD=x,又∵点F是AB的中点,∴AE=BE=y,在Rt△AEF中,勾股定理可得:y2=25+x2,∴y2﹣x2=25.(2)①当点在线段CB上时,由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,∴AD2=50,△ADE的面积为;②当点在线段CB的延长线上时,由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt△ACD中,勾股定理可得AD2=200+100,综上所述,△ADE的面积为或.【题目点拨】此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.22、(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.【解题分析】分析:(1)根据点(4,1)在()的图象上,即可求出的值;(2)①当时,根据整点的概念,直接写出区域内的整点个数即可.②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.详解:(1)解:∵点(4,1)在()的图象上.∴,∴.(2)①3个.(1,0),(2,0),(3,0).②.当直线过(4,0)时:,解得.当直线过(5,0)时:,解得.当直线过(1,2)时:,解得.当直线过(1,3)时:,解得∴综上所述:或.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.23、(1)①证明见解析;②23【解题分析】试题分析:(1)①根据题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年二级注册建筑师之法律法规经济与施工考试题库500道含答案(培优b卷)
- 2026年新疆石河子职业技术学院单招综合素质考试参考题库附答案详解
- 2026年泰山护理职业学院单招综合素质考试备考试题附答案详解
- 2026年长沙南方职业学院单招职业技能考试模拟试题附答案详解
- 贵州省贵阳市公务员考试常识判断专项练习题含答案
- 2025年蚌埠工商学院辅导员招聘备考题库附答案
- 2026年铜陵职业技术学院单招职业技能考试模拟试题附答案详解
- 2026年摩托车科目一测试题库100道及参考答案【综合题】
- 2026年政府采购培训试题100道及完整答案【考点梳理】
- 2026年时事政治测试题库100道附答案【轻巧夺冠】
- 2026年七年级历史上册期末考试试卷及答案(共六套)
- 资产评估期末试题及答案
- 2025年内科医师定期考核模拟试题及答案
- 郑州大学《大学英语》2023-2024学年第一学期期末试卷
- 校企合作工作室规范管理手册
- 2025年农业农村部科技发展中心招聘备考题库及1套参考答案详解
- 2025年南阳科技职业学院单招职业适应性考试模拟测试卷附答案
- 毛泽东思想和中国特色社会主义理论体系概论+2025秋+试题1
- 学堂在线 雨课堂 学堂云 研究生学术与职业素养讲座 章节测试答案
- 博士课程-中国马克思主义与当代(2024年修)习题答案
- FZ/T 24022-2015精梳水洗毛织品
评论
0/150
提交评论