版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市第二中学2024届高三下学期第四次阶段检测试题数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是()A. B. C. D.2.已知函数,,若对任意的,存在实数满足,使得,则的最大值是()A.3 B.2 C.4 D.53.已知集合,,则集合的真子集的个数是()A.8 B.7 C.4 D.34.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为()A.20 B.24 C.25 D.265.设,,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是()A. B. C. D.7.已知向量,,若,则()A. B. C. D.8.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是()A.是偶函数 B.是奇函数C.是奇函数 D.是奇函数9.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,,,则按照以上规律,若具有“穿墙术”,则()A.48 B.63 C.99 D.12010.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为()A.或 B.或 C.或 D.或11.在三棱锥中,,,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为()A. B. C. D.12.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随着国力的发展,人们的生活水平越来越好,我国的人均身高较新中国成立初期有大幅提高.为了掌握学生的体质与健康现状,合理制定学校体育卫生工作发展规划,某市进行了一次全市高中男生身高统计调查,数据显示全市30000名高中男生的身高(单位:)服从正态分布,且,那么该市身高高于的高中男生人数大约为__________.14.已知正方形边长为,空间中的动点满足,,则三棱锥体积的最大值是______.15.抛物线上到其焦点距离为5的点有_______个.16.已知为椭圆的左、右焦点,点在椭圆上移动时,的内心的轨迹方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由18.(12分)已知()过点,且当时,函数取得最大值1.(1)将函数的图象向右平移个单位得到函数,求函数的表达式;(2)在(1)的条件下,函数,求在上的值域.19.(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.20.(12分)如图,三棱柱的侧棱垂直于底面,且,,,,是棱的中点.(1)证明:;(2)求二面角的余弦值.21.(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.22.(10分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围.【题目详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【题目点拨】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.2、A【解题分析】
根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值.【题目详解】,,对任意的,存在实数满足,使得,易得,即恒成立,,对于恒成立,设,则,令,在恒成立,,故存在,使得,即,当时,,单调递减;当时,,单调递增.,将代入得:,,且,故选:A【题目点拨】本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.3、D【解题分析】
转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【题目详解】由题意得,,集合的真子集的个数为个.故选:D.【题目点拨】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.4、D【解题分析】
利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【题目详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【题目点拨】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.5、A【解题分析】
根据对数的运算分别从充分性和必要性去证明即可.【题目详解】若,,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【题目点拨】本题考查充要条件的定义,判断充要条件的方法是:①若为真命题且为假命题,则命题p是命题q的充分不必要条件;②若为假命题且为真命题,则命题p是命题q的必要不充分条件;③若为真命题且为真命题,则命题p是命题q的充要条件;④若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.6、A【解题分析】
根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.【题目详解】程序框图共运行3次,输出的的范围是,所以输出的不小于103的概率为.故选:A.【题目点拨】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.7、A【解题分析】
利用平面向量平行的坐标条件得到参数x的值.【题目详解】由题意得,,,,解得.故选A.【题目点拨】本题考查向量平行定理,考查向量的坐标运算,属于基础题.8、C【解题分析】
根据函数奇偶性的性质即可得到结论.【题目详解】解:是奇函数,是偶函数,,,,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确.为偶函数,故错误,故选:.【题目点拨】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.9、C【解题分析】
观察规律得根号内分母为分子的平方减1,从而求出n.【题目详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【题目点拨】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.10、D【解题分析】
设,,根据和抛物线性质得出,再根据双曲线性质得出,,最后根据余弦定理列方程得出、间的关系,从而可得出离心率.【题目详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,,则,为双曲线上的点,则,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故选:D.【题目点拨】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.11、A【解题分析】
设的中点为O先求出外接圆的半径,设,利用平面ABC,得,在及中利用勾股定理构造方程求得球的半径即可【题目详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【题目点拨】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题12、A【解题分析】
结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【题目详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【题目点拨】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、3000【解题分析】
根据正态曲线的对称性求出,进而可求出身高高于的高中男生人数.【题目详解】解:全市30000名高中男生的身高(单位:)服从正态分布,且,则,该市身高高于的高中男生人数大约为.故答案为:.【题目点拨】本题考查正态曲线的对称性的应用,是基础题.14、【解题分析】
以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,设点,根据题中条件得出,进而可求出的最大值,由此能求出三棱锥体积的最大值.【题目详解】以为原点,为轴,为轴,过作平面的垂线为轴建立空间直角坐标系,则,,,设点,空间中的动点满足,,所以,整理得,,当,时,取最大值,所以,三棱锥的体积为.因此,三棱锥体积的最大值为.故答案为:.【题目点拨】本题考查三棱锥体积的最大值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.15、2【解题分析】
设符合条件的点,由抛物线的定义可得,即可求解.【题目详解】设符合条件的点,则,所以符合条件的点有2个.故答案为:2【题目点拨】本题考查抛物线的定义的应用,考查抛物线的焦半径.16、【解题分析】
考查更为一般的问题:设P为椭圆C:上的动点,为椭圆的两个焦点,为△PF1F2的内心,求点I的轨迹方程.解法一:如图,设内切圆I与F1F2的切点为H,半径为r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z,,则.直线IF1与IF2的斜率之积:,而根据海伦公式,有△PF1F2的面积为因此有.再根据椭圆的斜率积定义,可得I点的轨迹是以F1F2为长轴,离心率e满足的椭圆,其标准方程为.解法二:令,则.三角形PF1F2的面积:,其中r为内切圆的半径,解得.另一方面,由内切圆的性质及焦半径公式得:从而有.消去θ得到点I的轨迹方程为:.本题中:,代入上式可得轨迹方程为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)不存在,见解析【解题分析】
(1)求出函数的导数,通过讨论的范围求出函数的单调区间即可;(2)求出函数的导数,结合导数的几何意义,再令,转化为方程有解问题,即可说明.【题目详解】(1)函数的定义域为,所以当时,;,所以函数在上单调递增当时,①当时,函数在上递增②,显然无增区间;③当时,,函数在上递增,综上当函数在上单调递增.当时函数在上单调递增;当时函数无单调递增区间当时函数在上单调递增(2)假设函数存在“中值相依切线”设是曲线上不同的两个点,且则曲线在点处的切线的斜率为,.令,则,单调递增,,故无解,假设不成立综上,假设不成立,所以不存在“中值相依切线”【题目点拨】本题考查了函数的单调性,导数的几何意义,考查导数的应用以及分类讨论和转化思想,属于中档题.18、(1);(2).【解题分析】
试题分析:(1)由题意可得函数f(x)的解析式为,则.(2)整理函数h(x)的解析式可得:,结合函数的定义域可得函数的值域为.试题解析:(1)由函数取得最大值1,可得,函数过得,,∵,∴,.(2),,,值域为.19、(1);(2)见解析.【解题分析】
(1)设切点坐标为,然后根据可解得实数的值;(2)令,,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.【题目详解】(1),,设曲线与轴相切于点,则,即,解得.所以,当时,轴为曲线的切线;(2)令,,则,,由,得.当时,,此时,函数为增函数;当时,,此时,函数为减函数.,.①当,即当时,函数有一个零点;②当,即当时,函数有两个零点;③当,即当时,函数有三个零点;④当,即当时,函数有两个零点;⑤当,即当时,函数只有一个零点.综上所述,当或时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点.【题目点拨】本题考查了利用导数的几何意义研究切线方程和利用导数研究函数的单调性与极值,关键是分类讨论思想的应用,属难题.20、(1)详见解析;(2).【解题分析】
(1)根据平面,四边形是矩形,由为中点,且,利用平面几何知识,可得,又平面,所以,根据线面垂直的判定定理可有平面,从而得证.(2)分别以,,为,,轴建立空间直角坐标系,得到,,,,分别求得平和平面的法向量,代入二面角向量公式求解.【题目详解】(1)证明:∵平面,∴四边形是矩形,∵为中点,且,∴,∵,,,∴.∴,∵,∴与相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如图,分别以,,为,,轴建立空间直角坐标系,则,,,设平面的法向量为,则,,解得:,同理,平面的法向量,设二面角的大小为,则.即二面角的余弦值为.【题目点拨】本题主要考查线线垂直、线面垂直的转化以及二面角的求法,还考查了转化化归的思想和推理论证、运算求解的能力,属于中档题.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学动漫与游戏制作(动画特效制作)试题及答案
- 2025年大学船舶电子电气工程(系统设计)期末试题
- 2025年大学(计算机科学与技术)人工智能导论试题及答案
- 中职第二学年(机械装配)机械设备装配2026年阶段测试题及答案
- 2026年戏曲学(戏曲理论)考题及答案
- 2025年大学模具设计与制造(冷却系统设计)试题及答案
- 2026下半年商务英语(BEC中级口语)高频话题与应答
- 中职第三学年(汽车维修)汽车发动机维修2026年阶段测试题及答案
- 2026年助听器验配(验配科研)试题及答案
- 2025年大学大二(英语)英美文学选读试题及答案
- 核电子学习题+答案+课后答案
- MOOC 化工热力学-天津大学 中国大学慕课答案
- 幼儿园常见传染病课件
- 单值-移动极差控制图(自动版)
- 成人肥胖食养指南2024年版-国家卫健委-202403
- 罗伯特议事规则
- 《就业指导》课件
- 医院急诊科简介
- 华为企业社会责任报告
- 几何模型6.4+“胡不归”模型(直角三角形模型) 中考数学二轮复习必会几何模型剖析(全国通用)
- 《线性代数》教案教案整本书全书电子教案
评论
0/150
提交评论