




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年安徽省滁州市琅琊区数学九年级第一学期期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知,则的度数是()A.30° B.45° C.60° D.90°2.如图,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣123.某班抽取6名同学参加体能测试,成绩如下:1,95,1,80,80,1.下列表述错误的是()A.众数是1 B.平均数是1 C.中位数是80 D.极差是154.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.的三边高线的交点处B.的三角平分线的交点处C.的三边中线的交点处D.的三边中垂线线的交点处5.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.π D.π6.若一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,则反比例函数y=的图象所在的象限是()A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限7.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是()A. B. C. D.8.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.99.下列说法正确的是()A.为了了解长沙市中学生的睡眠情况,应该采用普查的方式B.某种彩票的中奖机会是1%,则买111张这种彩票一定会中奖C.若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则乙组数据比甲组数据稳定D.一组数据1,5,3,2,3,4,8的众数和中位数都是310.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BAD的度数是()A.60° B.80° C.100° D.120°二、填空题(每小题3分,共24分)11.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.12.某厂前年缴税万元,今年缴税万元,如果该厂缴税的年平均增长率为,那么可列方程为______.13.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.14.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.15.将一元二次方程写成一般形式_____.16.如图,,,是上的三个点,四边形是平行四边形,连接,,若,则_____.17.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.18.如图,AE,AD,BC分别切⊙O于点E、D和点F,若AD=8cm,则△ABC的周长为_______cm.三、解答题(共66分)19.(10分)今年下半年以来,猪肉价格不断上涨,主要是由非洲猪瘟疫情导致.非洲猪瘟疫情发病急,蔓延速度快.某养猪场第一天发现3头生猪发病,两天后发现共有192头生猪发病.(1)求每头发病生猪平均每天传染多少头生猪?(2)若疫情得不到有效控制,按照这样的传染速度,3天后生猪发病头数会超过1500头吗?20.(6分)我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步.”其大意是:一矩形田地面积为864平方步,宽比长少12步,问该矩形田地的长和宽各是多少步?请用已学过的知识求出问题的解.21.(6分)在直角坐标平面内,某二次函数图象的顶点为,且经过点.(1)求该二次函数的解析式;(2)求直线y=-x-1与该二次函数图象的交点坐标.22.(8分)(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)23.(8分)解方程:x2﹣6x﹣40=024.(8分)如图,AB是⊙O的直径,点C在圆O上,BE⊥CD垂足为E,CB平分∠ABE,连接BC(1)求证:CD为⊙O的切线;(2)若cos∠CAB=,CE=,求AD的长.25.(10分)小王、小张和小梅打算各自随机选择本周六的上午或下午去高邮湖的湖上花海去踏青郊游.(1)小王和小张都在本周六上午去踏青郊游的概率为_______;(2)求他们三人在同一个半天去踏青郊游的概率.26.(10分)如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.
参考答案一、选择题(每小题3分,共30分)1、C【解析】根据特殊角三角函数值,可得答案.【详解】解:由,得α=60°,
故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2、D【分析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,BC•EO=AB•CO,求得ab的值即可.【详解】设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选D.考点:反比例函数系数k的几何意义;矩形的性质;平行线分线段成比例;数形结合.3、C【分析】本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和极差的定义可分别求出.【详解】解:这组数据中1出现了3次,出现的次数最多,所以这组数据的众数位1;由平均数公式求得这组数据的平均数位1,极差为95-80=15;将这组数据按从大到校的顺序排列,第3,4个数是1,故中位数为1.所以选项C错误.故选C.【点睛】本题考查了统计学中的平均数,众数,中位数与极差的定义.解答这类题学生常常对中位数的计算方法掌握不好而错选.4、D【分析】根据题意知,猫应该蹲守在到三个洞口的距离相等的位置上,则此点就是三角形三边垂直平分线的交点.【详解】解:根据三角形三边垂直平分线的交点到三个顶点的距离相等,可知猫应该蹲守在△ABC三边的中垂线的交点上.
故选:D.【点睛】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.5、C【解析】试题解析:∵PA、PB是⊙O的切线,
∴∠OBP=∠OAP=90°,
在四边形APBO中,∠P=60°,
∴∠AOB=120°,
∵OA=2,
∴的长l=.
故选C.6、B【分析】首先根据一元二次方程根的判别式确定m的取值范围,进而可得m+2的取值范围,然后再根据反比例函数的性质可得答案.【详解】∵一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,∴△=b2﹣4ac=16+16m>0,∴m>﹣1,∴m+2>1,∴反比例函数y=的图象所在的象限是第一、三象限,故选:B.【点睛】本题主要考查了反比例函数的性质以及一元二次方程根的判别式,关键是正确确定m的取值范围.7、D【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是=,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)事件A可能出现的结果数所有可能出现的结果数,灵活利用概率公式是解题的关键.8、A【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=10°,OB=1,∴AO=1,则OP=6,故BP=6-1=1.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.9、D【分析】根据抽样调查、概率、方差、中位数与众数的概念判断即可.【详解】A、为了解长沙市中学生的睡眠情况,应该采用抽样调查的方式,不符合题意;B、某种彩票的中奖机会是1%,则买111张这种彩票可能会中奖,不符合题意;C、若甲组数据的方差s甲2=1.1,乙组数据的方差s乙2=1.2,则甲组数据比乙组数据稳定,不符合题意;D、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意;故选:D.【点睛】本题考查统计的相关概念,关键在于熟记概念.10、B【分析】根据圆周角定理即可得到结论.【详解】解:∵∠BOD=160°,∴∠BAD=∠BOD=80°,故选:B.【点睛】本题考查了圆周角定理,理解熟记圆周角定理是解题关键..二、填空题(每小题3分,共24分)11、1【分析】根据题意首先由多边形外角和定理求出正多边形的边数n,再由正多边形的中心角=,即可得出答案.【详解】解:∵正多边形的每一个外角都等于1°,∴正多边形的边数为:,∴这个正多边形的中心角为:.故答案为:1.【点睛】本题考查正多边形的性质和多边形外角和定理以及正多边形的中心角的计算方法,熟练掌握正多边形的性质并根据题意求出正多边形的边数是解决问题的关键.12、【分析】由题意设该厂缴税的年平均增长率为x,根据该厂前年及今年的纳税额,即可得出关于x的一元二次方程.【详解】解:如果该厂缴税的年平均增长率为,那么可以用表示今年的缴税数,今年的缴税数为,然后根据题意列出方程.故答案为:.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13、【分析】连接OA,根据反比例函数中k的几何意义可得,再根据等底同高的三角形的面积相等即可得出结论【详解】解:连接OA,∵反比例函数的图象经过点,∴;∵过作轴垂线,垂足是;∴AB//OC∴和等底同高;∴;故答案为:【点睛】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键14、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴,解得x=15,检验:x=15是原方程的根,∴白球的个数为15个,故答案为:15.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键.15、【分析】先去括号,然后移项,最后变形为一般式.【详解】故答案为:.【点睛】本题考查完全平方公式、去括号和移项,需要注意,移项是需要变号的.16、64【分析】先根据圆周角定理求出∠O的度数,然后根据平行四边形的对角相等求解即可.【详解】∵,∴∠O=2,∵四边形是平行四边形,∴∠O=.故答案为:64.【点睛】本题考查了圆周角定理,平行四变形的性质,熟练掌握圆周角定理是解答本题的关键.在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.17、1【分析】极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值,根据极差的定义即可解答.【详解】解:由题意可知,极差为28−12=1,
故答案为:1.【点睛】本题考查了极差的定义,解题时牢记定义是关键.18、16【解析】∵AE,AD,BC分别切O于点E.
D和点F,∴AD=AC,DB=BF,CE=CF,∴AB+BC+AC=AB+BF+CF+AC=AB+BD+CE+AC=AD+AE=2AD=16cm,故答案为:16.三、解答题(共66分)19、(1)7头;(2)会超过1500头【分析】(1)设每头发病生猪平均每天传染x头生猪,根据“第一天发现3头生猪发病,两天后发现共有192头生猪发病”,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据3天后生猪发病头数=2天后生猪发病头数×(1+7),即可求出3天后生猪发病头数,再将其与1500进行比较即可得出结论.【详解】解:(1)设每头发病生猪平均每天传染头生猪,依题意,得,解得:,(不合题意,舍去).答:每头发病生猪平均每天传染7头生猪.(2)(头,.答:若疫情得不到有效控制,3天后生猪发病头数会超过1500头.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20、矩形的阔为24步,长为36步.【解析】设阔为x步,则长为(x+12)步,根据面积为864,即可得出方程求解即可.【详解】设阔为x步,则长为(x+12)步,由题意可得:x(x+12)=864,解得:x1=24,x2=﹣36(舍),24+12=36,答:矩形的阔为24步,长为36步.【点睛】本题考查了一元二次方程的应用,为面积问题,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.21、(1);(2)两个函数图象的交点坐标是和.【分析】(1)根据题意可设该二次函数的解析式为,把点代入函数解析式,求出a值,进而得出该二次函数的解析式;(2)由题意直线y=-x-1与该二次函数图象有交点得,进行求解进而分析即可.【详解】解:(1)依题意可设该二次函数的解析式为,把代入函数解析式,得,解得,故该二次函数的解析式是.(2)据题意,得,得,.当时,可得;当时,可得.故两个函数图象的交点坐标是和.【点睛】本题考查待定系数法求二次函数解析式,解题的关键是设出二次函数的顶点式,求出函数解析式.22、(1);(2)见解析.【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则,即,∴AP=.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.23、x1=10,x2=﹣1.【分析】用因式分解法即可求解.【详解】解:x2﹣6x﹣10=0,(x﹣10)(x+1)=0,∴x﹣10=0或x+1=0,∴x1=10,x2=﹣1.【点睛】本题考查一元二次方程的解法,解题的关键是掌握一元二次方程的解法,有直接开平方法、配方法、公式法、因式分解法.24、(1)见解析;(2)AD=.【分析】(1)连接OC,根据等边对等角,以及角平分线的定义,即可证得∠OCB=∠EBC,则OC∥BE,从而证得OC⊥CD,即CD是⊙O的切线;(2)根据勾股定理和相似三角形的判定和性质即可得到结论.【详解】证明:(1)连接OC.∵OC=OB,∴∠ABC=∠OCB,又∵∠EBC=∠ABC,∴∠OCB=∠EBC,∴OC∥BE,∵BE⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)设AB=x,∵AB是⊙O的直径,∴∠ACB=90°,∴直角△ABC中,AC=AB•cos∠CAB=,∴BC===x,∵∠BCE+∠BCO=∠CAB+∠ABC=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠CAB=∠BCE,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园家长会方案设计幼儿园家长会活动方案
- 2024-2025新进厂员工安全培训考试试题答案高清版
- 2025年公司安全培训考试试题含完整答案【易错题】
- 2025版限价房购房合同范本
- 2025年度文具采购合同文具采购合同范本
- 2025试用合同范本2
- 2025建筑涂料施工合同范本
- 2025××科技公司合同管理业绩制度
- 2025年服装、鞋帽加工机械项目合作计划书
- 2025年搅拌机租赁合同范本
- YY/T 0655-2024干式化学分析仪
- 中华民族共同体概论课件专家版2第二讲 树立正确的中华民族历史观
- 四年级四年级下册阅读理解100篇及答案经典
- 中职对口升学复习资料:《汽车机械基础》试题库+答案
- 部编版语文五年级下册第六单元整体教学设计教案
- 平面变压器设计与仿真
- 合作取得更大的成功辩论稿范文六篇
- 相关方需求和期望识别评价表
- 西南科技大学井巷工程课程设计样本
- 某化妆品牌案例分析
- 循环水管道施工组织设计
评论
0/150
提交评论