2024届福建省南平市浦城县数学九上期末复习检测试题含解析_第1页
2024届福建省南平市浦城县数学九上期末复习检测试题含解析_第2页
2024届福建省南平市浦城县数学九上期末复习检测试题含解析_第3页
2024届福建省南平市浦城县数学九上期末复习检测试题含解析_第4页
2024届福建省南平市浦城县数学九上期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省南平市浦城县数学九上期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知平面直角坐标系中有两个二次函数及的图象,将二次函数的图象依下列哪一种平移方式后,会使得此两图象对称轴重叠()A.向左平移4个单位长度 B.向右平移4个单位长度C.向左平移10个单位长度 D.向右平移10个单位长度3.如图,平行四边形ABCD中,EF∥BC,AE:EB=2:3,EF=4,则AD的长为()A. B.8 C.10 D.164.如图,线段AB是⊙O的直径,弦,,则等于().A. B. C. D.5.《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是()A.步 B.步 C.步 D.步6.下列语句,错误的是()A.直径是弦 B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心 D.平分弧的半径垂直于弧所对的弦7.某学习小组在研究函数y=x3﹣2x的图象与性质时,列表、描点画出了图象.结合图象,可以“看出”x3﹣2x=2实数根的个数为()A.1 B.2 C.3 D.48.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分9.如图,AB是⊙O的弦,∠BAC=30°,BC=2,则⊙O的直径等于()A.2 B.3 C.4 D.610.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米 B.6米 C.8米 D.(3+)米二、填空题(每小题3分,共24分)11.如图,直线交轴于点B,交轴于点C,以BC为边的正方形ABCD的顶点A(-1,a)在双曲线上,D点在双曲线上,则的值为_______.12.计算_________.13.如图,△ABC内接于圆,点D在弧BC上,记∠BAC-∠BCD=α,则图中等于α的角是_______14.一元二次方程x2=x的解为.15.若AB是⊙O的直径,AC是弦,OD⊥AC于点D,若OD=4,则BC=_____.16.点P(3,﹣4)关于原点对称的点的坐标是_____.17.如图,在平面直角坐标系中,矩形的两边在其坐标轴上,以轴上的某一点为位似中心作矩形,使它与矩形位似,且点,的坐标分别为,,则点的坐标为__________.18.已知菱形中,,,边上有点点两动点,始终保持,连接取中点并连接则的最小值是_______.三、解答题(共66分)19.(10分)如图,∠AED=∠C,DE=4,BC=12,CD=15,AD=3,求AE、BE的长.20.(6分)小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.21.(6分)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?22.(8分)已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?23.(8分)某校为了丰富学生课余生活,计划开设以下社团:A.足球、B.机器人、C.航模、D.绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.24.(8分)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.(1)当PE⊥AB,PF⊥BC时,如图1,则的值为;(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.25.(10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?26.(10分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)

参考答案一、选择题(每小题3分,共30分)1、A【解析】∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.2、C【分析】将二次函数解析式展开,结合二次函数的性质找出两个二次函数的对称轴,二者做差后即可得出平移方向及距离.【详解】解:∵=ax2+6ax-7a,=bx2-14bx-15b∴二次函数的对称轴为直线x=-3,二次函数的对称轴为直线x=7,∵-3-7=-10,∴将二次函数的图象向左平移10个单位长度后,会使得此两图象对称轴重叠,故选C.【点睛】本题考查的是二次函数的图象与几何变换以及二次函数的性质,熟知二次函数的性质是解答此题的关键.3、C【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,可证明△AEF∽△ABC,再根据相似三角形的对应边成比例可解得BC的长,而在▱ABCD中,AD=BC,问题得解.【详解】解:∵EF∥BC∴△AEF∽△ABC,∴EF:BC=AE:AB,∵AE:EB=2:3,∴AE:AB=2:5,∵EF=4,∴4:BC=2:5,∴BC=1,∵四边形ABCD是平行四边形,∴AD=BC=1.【点睛】本题考查(1)、相似三角形的判定与性质;(2)、平行四边形的性质.4、C【分析】先根据垂径定理得到,再根据圆周角定理得∠BOD=2∠CAB=40°,然后利用邻补角的定义计算∠AOD的度数.【详解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案为C.【点睛】本题考查圆中的角度计算,熟练掌握垂径定理和圆周角定理是关键.5、A【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径,进而得出直径.【详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【点睛】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.6、B【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.∵在同圆或等圆中,相等的圆心角所对的弧相等,∴相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【点睛】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.7、C【分析】利用直线y=2与yx1﹣2x的交点个数可判断x1﹣2x=2实数根的个数.【详解】由图象可得直线y=2与yx1﹣2x有三个交点,所以x1﹣2x=2实数根的个数为1.故选C.【点睛】本题考查了函数图像的交点问题:把要求方程根的问题转化为函数图像的交点问题是解题关键.8、A【详解】这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,故选A.9、C【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.10、A【解析】试题分析:根据CD:AD=1:2,AC=3米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD==8米,则BC=BD-CD=8-3=5米.考点:直角三角形的勾股定理二、填空题(每小题3分,共24分)11、6【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【详解】∵A(−1,a)在反比例函数y=上,∴a=2,∴A(−1,2),∵点B在直线y=kx−1上,∴B(0,−1),∴AB=,∵四边形ABCD是正方形,∴BC=AB=,设B(m,0),∴,∴m=−3(舍)或m=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),将点D的坐标代入反比例函数y=中,∴k=6故答案为:6.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题突破口是确定出点A的坐标.12、【分析】先分别计算特殊角的三角函数值,负整数指数幂,再合并即可得到答案.【详解】解:故答案为:【点睛】本题考查的是特殊角三角函数的计算,负整数指数幂的运算,掌握以上知识点是解题的关键.13、∠DAC【分析】由于∠BAD与∠BCD是同弧所对的圆周角,故∠BAD=∠BCD,故∠BAC-∠BCD=∠BAC-∠BAD,即可得出答案.【详解】解:∵∠BAD=∠BCD,∴∠BAC-∠BCD=∠BAC-∠BAD=∠DAC,∵∠BAC-∠BCD=α∴∠DAC=α故答案为:∠DAC.【点睛】本题考查了圆周角的性质,掌握同弧所对的圆周角相等是解题的关键.14、x1=0,x2=1.【解析】试题分析:首先把x移项,再把方程的左面分解因式,即可得到答案.解:x2=x,移项得:x2﹣x=0,∴x(x﹣1)=0,x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.考点:解一元二次方程-因式分解法.15、1【分析】由OD⊥AC于点D,根据垂径定理得到AD=CD,即D为AC的中点,则OD为△ABC的中位线,根据三角形中位线性质得到OD=BC,然后把OD=4代入计算即可.【详解】∵OD⊥AC于点D,∴AD=CD,即D为AC的中点,∵AB是⊙O的直径,∴点O为AB的中点,∴OD为△ABC的中位线,∴OD=BC,∴BC=2OD=2×4=1.故答案为:1.【点睛】本题考查了三角形中位线定理以及垂径定理的运用.熟记和圆有关的各种性质定理是解题的关键.16、(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【详解】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.17、【分析】首先求出位似图形的位似中心坐标,然后即可得出点D的坐标.【详解】连接BF交轴于P,如图所示:∵矩形和矩形,点,的坐标分别为,,∴点C的坐标为∵BC∥GF∴∴GP=1,PC=2,OP=3∴点P即为其位似中心∴OD=6∴点D坐标为故答案为:.【点睛】此题主要考查位似图形的性质,熟练掌握,即可解题.18、1【分析】过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.由菱形性质和可证明,进而可得,由BM最小值为BH即可求解.【详解】解:过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.∵在菱形中,,,∴,,∴,∵,,∴,∴,又∵,∴,∴,又∵,∴,∴当BM最小时FG最小,根据点到直线的距离垂线段最短可知,BM的最小值等于BH,∵在菱形中,,∴又∵在Rt△CHD中,,∴,∴,∴AM的最小值为6,∴的最小值是1.故答案为:1.【点睛】本题考查了动点线段的最小值问题,涉及了菱形的性质、等腰三角形性质和判定、垂线段最短、中位线定理等知识点;将“两动点”线段长通过中位线转化为“一定一动”线段长求解是解题关键.三、解答题(共66分)19、AE=6,BE=3.【解析】先根据已知条件求证△ABC∽△ADE,然后根据相似三角形对应边成比例,代入数值即可求解.【详解】∵∠AED=∠C,∠A为公共角∴△ABC∽△ADE∴又∵DE=4,BC=12,CD=15,AD=3,∴AC=15+3=18∴∴AE=6,AB=9∴BE=9-6=3【点睛】本题考查了相似三角形的性质和判定,利用相似三角形对应边成比例即可解题.20、这个游戏对双方不公平,理由见解析.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:;∴小明胜的概率为,小亮胜的概率为,∵≠,∴这个游戏对双方不公平.故答案为这个游戏对双方不公平,理由见解析.【点睛】本题考查了树状图法求概率,判断游戏的公平性.21、选择A转盘.理由见解析【解析】试题分析:由题意可以画出树状图,然后根据树状图求得到所有等可能的结果,找全满足条件的所有情况,再利用概率公式即可求得答案.试题解析:选择A转盘.画树状图得:∵共有9种等可能的结果,A大于B的有5种情况,A小于B的有4种情况,∴P(A大于B)=,P(A小于B)=,∴选择A转盘.考点:列表法与树状图法求概率22、(1)BP=2或BP=12;(2)当BP的值为2,12或5.1时,两三角形相似.【解析】试题分析:分△ABP∽△PCD和△ABP∽△DCP两种情况,根据相似三角形的性质列出比例式,计算即可.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.1.综合以上可知,当BP的值为2,12或5.1时,两三角形相似.考点:相似三角形的性质.23、(1);(2);【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=.(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A),(C,B),(C,C),(C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.24、(1);(2);(3)变化.证明见解析.【分析】(1)证明△APE≌△PCF,得PE=CF;在Rt△PCF中,解直角三角形求得的值即可;(2)如答图1所示,作辅助线,构造直角三角形,证明△PME∽△PNF,并利用(1)的结论,求得的值;(3)如答图2所示,作辅助线,构造直角三角形,首先证明△APM∽△PCN,求得;然后证明△PME∽△PNF,从而由求得的值.与(1)(2)问相比较,的值发生了变化.【详解】(1)∵矩形ABCD,∴AB⊥BC,PA=PC.∵PE⊥AB,BC⊥AB,∴PE∥BC.∴∠APE=∠PCF.∵PF⊥BC,AB⊥BC,∴PF∥AB.∴∠PAE=∠CPF.∵在△APE与△PCF中,∠PAE=∠CPF,PA=PC,∠APE=∠PCF,∴△APE≌△PCF(ASA).∴PE=CF.在Rt△PCF中,,∴;(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME∽△PNF.∴.由(1)知,,∴.(3)变化.证明如下:如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN.∴△APM∽△PCN.∴,得CN=2PM.在Rt△PCN中,,∴.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME∽△PNF.∴.∴的值发生变化.25、(1)w=-10x2+700x-10000(20≤x≤32);(2)当销售单价定为32元/件时,每月可获得最大利润,最大利润是2160元.【解析】分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论