2024届黑龙江省大庆市龙凤区第五十七中学数学九年级第一学期期末综合测试模拟试题含解析_第1页
2024届黑龙江省大庆市龙凤区第五十七中学数学九年级第一学期期末综合测试模拟试题含解析_第2页
2024届黑龙江省大庆市龙凤区第五十七中学数学九年级第一学期期末综合测试模拟试题含解析_第3页
2024届黑龙江省大庆市龙凤区第五十七中学数学九年级第一学期期末综合测试模拟试题含解析_第4页
2024届黑龙江省大庆市龙凤区第五十七中学数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省大庆市龙凤区第五十七中学数学九年级第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.方程的解的个数为()A.0 B.1 C.2 D.1或22.如图,AE是四边形ABCD外接圆⊙O的直径,AD=CD,∠B=50°,则∠DAE的度数为()A.70° B.65° C.60° D.55°3.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A. B. C. D.4.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+=4 D.x2=3x﹣25.顺次连结菱形各边中点所得到四边形一定是(​)A.平行四边形 B.正方形​ C.矩形​ D.菱形6.把二次函数,用配方法化为的形式为()A. B.C. D.7.下列各组图形中,是相似图形的是()A. B.C. D.8.﹣的绝对值为()A.﹣2 B.﹣ C. D.19.在中,,则().A. B. C. D.10.已点A(﹣1,y1),B(2,y2)都在反比例函数y=的图象上,并且y1<y2,那么k的取值范围是()A.k>0 B.k>1 C.k<1 D.k≠111.如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为()A.6 B.8 C.10 D.1212.定义新运算:对于两个不相等的实数,,我们规定符号表示,中的较大值,如:.因此,;按照这个规定,若,则的值是()A.-1 B.-1或 C. D.1或二、填空题(每题4分,共24分)13.如图,AD,BC相交于点O,AB∥CD.若AB=2,CD=3,则△ABO与△DCO的面积之比为_____.14.一元二次方程的两根为,,则的值为____________.15.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为_____.16.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S甲2=6.5分2,乙同学成绩的方差S乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).17.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.18.在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是____________.三、解答题(共78分)19.(8分)如图,已知点在的直径延长线上,点为上,过作,与的延长线相交于,为的切线,,.(1)求证:;(2)求的长;(3)若的平分线与交于点,为的内心,求的长.20.(8分)如图,在中,,垂足为平分,交于点,交于点.(1)若,求的长;(2)过点作的垂线,垂足为,连接,试判断四边形的形状,并说明原因.21.(8分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD的长.22.(10分)如图,矩形中,为原点,点在轴上,点在轴上,点的坐标为(4,3),抛物线与轴交于点,与直线交于点,与轴交于两点.(1)求抛物线的表达式;(2)点从点出发,在线段上以每秒1个单位长度的速度向点运动,与此同时,点从点出发,在线段上以每秒个单位长度的速度向点运动,当其中一点到达终点时,另一点也停止运动.连接,设运动时间为(秒).①当为何值时,得面积最小?②是否存在某一时刻,使为直角三角形?若存在,直接写出的值;若不存在,请说明理由.23.(10分)如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.24.(10分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点、,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程与时间满足关系,乙以的速度匀速运动,半圆的长度为.(1)甲运动后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?25.(12分)总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆人次,进馆人次逐月增加,到第三个月末累计进馆人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.26.如图,在电线杆上的点处引同样长度的拉线,固定电线杆,在离电线杆6米处安置测角仪(其中点、、、在同一条直线上),在处测得电线杆上点处的仰角为,测角仪的高为米.(1)求电线杆上点离地面的距离;(2)若拉线,的长度之和为18米,求固定点和之间的距离.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据一元二次方程根的判别式,求出△的值再进行判断即可.【详解】解:∵x2=0,

∴△=02-4×1×0=0,∴方程x2=0有两个相等的实数根.故选C【点睛】本题考查的是一元二次方程根的判别式,当△>0时方程有两个不相等的实数根,△=0时方程有两个相等的实数根,△<0时方程没有实数根.2、B【分析】连接OC、OD,利用圆心角、弧、弦的关系以及圆周角定理求得∠AOD=50°,然后根据的等腰三角形的性质以及三角形内角和定理即可求得∠DAE=65°.【详解】解:连接OC、OD,∵AD=CD,∴,∴∠AOD=∠COD,∵∠AOC=2∠B=2×50°=100°,∴AOD=50°,∵OA=OD,∴∠DAO=∠ADO=,即∠DAE=65°,故选:B.【点睛】本题考查了圆中弦,弧,圆心角之间的关系,圆周角定理和三角形内角和,解决本题的关键是正确理解题意,能够熟练掌握圆心角,弧,弦之间的关系.3、B【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:

∵圆的半径为4,

∴OB=OA=OC=4,

又四边形OABC是菱形,

∴OB⊥AC,OD=OB=2,

在Rt△COD中利用勾股定理可知:CD=,∵sin∠COD=∴∠COD=60°,∠AOC=2∠COD=120°,

∴S菱形ABCO=,∴S扇形=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=a•b(a、b是两条对角线的长度);扇形的面积=.4、D【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.5、C【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【详解】如图,四边形ABCD是菱形,且E.

F.

G、H分别是AB、BC、CD、AD的中点,

则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.

故四边形EFGH是平行四边形,

又∵AC⊥BD,

∴EH⊥EF,∠HEF=90°,

∴边形EFGH是矩形.

故选:C.【点睛】本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.6、B【分析】先提取二次项系数,再根据完全平方公式整理即可.【详解】解:;故选:B.【点睛】本题考查了二次函数的性质,二次函数的最值,二次函数的三种形式的转化,难点在于(3)判断出二次函数取最大值时的自变量x的值.7、D【分析】根据相似图形的概念:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似,直接判断即可得出答案,【详解】解:.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状不相同,不符合相似图形的定义,此选项不符合题意;.形状相同,但大小不同,符合相似图形的定义,此选项符合题意;故选:.【点睛】本题考查的知识点是相似图形的定义,理解掌握概念是解题的关键.8、C【解析】分析:根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.详解:﹣的绝对值为|-|=-(﹣)=.点睛:主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.9、A【分析】利用正弦函数的定义即可直接求解.【详解】sinA.故选:A.【点睛】本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.10、B【分析】利用反比例函数的性质即可得出答案.【详解】∵点A(﹣1,y1),B(1.y1)都在反比例函数y=的图象上,并且y1<y1,∴k﹣1>0,∴k>1,故选:B.【点睛】本题考查反比例函数的图象上的点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.11、B【分析】根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.【详解】解:∵四边形ABCD为正方形,抛物线y=2x2﹣4和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC=,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2﹣4的图象上,∴2n=2n2﹣4,解得,n1=2,n2=﹣1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=1.故选:B.【点睛】此题考查的是抛物线和正方形的对称性的应用、求二次函数上点的坐标和矩形的面积,掌握抛物线和正方形的对称性、求二次函数上点的坐标和矩形的面积公式是解决此题的关键.12、B【分析】分x>0和0x<0两种情况分析,利用公式法解一元二次方程即可.【详解】解:当x>0时,有,解得,(舍去),

x<0时,有,解得,x1=−1,x2=2(舍去).故选B.【点睛】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.二、填空题(每题4分,共24分)13、【分析】由AB∥CD可得出∠A=∠D,∠B=∠C,进而可得出△ABO∽△DCO,再利用相似三角形的性质可求出△ABO与△DCO的面积之比.【详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∴.故答案为:.【点睛】此题考查相似三角形的判定及性质,相似三角形的面积的比等于相似比的平方.14、2【解析】根据一元二次方程根的意义可得+2=0,根据一元二次方程根与系数的关系可得=2,把相关数值代入所求的代数式即可得.【详解】由题意得:+2=0,=2,∴=-2,=4,∴=-2+4=2,故答案为2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.15、【分析】等量关系为:红球数:总球数=,把相关数值代入即可求解.【详解】设红球有x个,根据题意得:,

解得:x=1.

故答案为1.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.16、乙【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.17、1【解析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=×4×4=1,故答案为1.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.18、(-3,4)【详解】在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是(-3,4).故答案为(-3,4).【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,它们的坐标符号相反.三、解答题(共78分)19、(1)见解析;(2);(3)【分析】(1)利用同角的余角相等得出∠E=∠ECD,从而得出结论;(2)利用直角△OCD和直角△ADE中的勾股定理列出方程解得BD的长;(3)连接,,,根据平分求出,利用同弧所对的圆周角相等得出,从而得出,即FP=FB.【详解】解:(1)证明:连接,∵是的切线,∴,∴,∵,∴,∵,∴,∴,∴.(2)∵,∴,∵,∴由勾股定理可得,,∵,∴由勾股定理可得,,∵,∴,∴或(舍去).(3)连接,,,∵平分,∴,∴,∵为直径,,∴,∵为的内心,∴,,∵,∴,∴,∴,∴.【点睛】本题属于圆的综合题,考查了圆周角的性质,勾股定理,等腰三角形的判定,内心的概念,需要综合多个条件进行推导.20、(1)CE=2;(2)菱形,理由见解析.【分析】(1)根据题意易求得∠ACD=∠CAF=∠BAF=30°,可得AE=CE,然后利用30°角的三角函数可求得CD的长、DE与AE的关系,进一步可得CE与CD的关系,进而可得结果;(2)根据角平分线的性质可得CF=GF,根据HL可证Rt△ACF≌Rt△AGF,从而得∠AFC=∠AFG,由平行线的性质和等量代换可得∠CEF=∠CFE,可得CE=CF,进而得CE=FG,根据一组对边平行且相等可得四边形CEGF是平行四边形,进一步即得结论.【详解】解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ACD=30°,∵AC=6,∴,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴∠ACD=∠CAF,,∴CE=AE=2DE,∴CE=2;(2)四边形CEGF是菱形.证明:∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF与Rt△AGF中,∵AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∵CE∥FG,∴四边形CEGF是平行四边形,∵CE=CF,∴平行四边形CEGF是菱形.【点睛】本题考查了直角三角形的性质、角平分线的性质、锐角三角函数、菱形的判定和直角三角形全等的判定和性质等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.21、AC=10,BD=10【分析】根据菱形的性质可得Rt△ABO中,∠ABO=∠ABD=∠ABC=30°,则可得AO和BO的长,根据AC=2AO,BD=2BO可得AC和BD的长;【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC,OB=OD=BD,∠ABD=∠ABC=30°,在Rt△ABO中,AB=10,∠ABO=∠ABD=30°,∴AO=AB=5,BO=AB=5,∴AC=2AO=10,BD=2BO=10.【点睛】本题主要考查了菱形的性质,解直角三角形,掌握菱形的性质,解直角三角形是解题的关键.22、(1);(2)①;②【分析】(1)根据点B的坐标可得出点A,C的坐标,代入抛物线解析式即可求出b,c的值,求得抛物线的解析式;(2)①过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,推出△QFA∽△CBA,△CGP∽△CBA,用含t的式子表示OF,PG,将三角形的面积用含t的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A(0,3),C(4,0),∵抛物线经过A、B两点,∴,解得,,∴抛物线的表达式为:.(2)①∵四边形ABCD是矩形,∴∠B=90O,∴AC2=AB2+BC2=5;由,可得,∴D(2,3).过点Q、P作QF⊥AB、PG⊥AC,垂足分别为F、G,∵∠FAQ=∠BAC,∠QFA=∠CBA,∴△QFA∽△CBA.∴,∴.同理:△CGP∽△CBA,∴∴,∴,当时,△DPQ的面积最小.最小值为.②由图像可知点D的坐标为(2,3),AC=5,直线AC的解析式为:.三角形直角的位置不确定,需分情况讨论:当时,根据勾股定理可得出:,整理,解方程即可得解;当时,可知点G运动到点B的位置,点P运动到C的位置,所需时间为t=3;当时,同理用勾股定理得出:;整理求解可得t的值.由此可得出t的值为:,,,,.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.23、(1)详见解析;(2)1.【分析】(1)先根据正方形的性质、直角三角形的性质得出,再加上一组直角相等,根据相似三角形的判定定理即可得证;(2)先根据正方形的性质、中点的性质求出AE的长,再根据勾股定理求出BE的长,最后根据相似三角形的性质、线段的和差即可得.【详解】(1)∵四边形ABCD为正方形,且;(2)∵四边形ABCD为正方形,点E为AD的中点在中,由(1)知,,即故的长为1.【点睛】本题考查了正方形的性质、勾股定理、相似三角形的判定定理与性质等知识点,较难的是题(2),由题(1)的结论联系到利用相似三角形的性质是解题关键.24、(1)28cm;(2)3s;(3)7s【分析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论