2024届内蒙古赤峰市、呼和浩特市数学高一下期末质量检测试题含解析_第1页
2024届内蒙古赤峰市、呼和浩特市数学高一下期末质量检测试题含解析_第2页
2024届内蒙古赤峰市、呼和浩特市数学高一下期末质量检测试题含解析_第3页
2024届内蒙古赤峰市、呼和浩特市数学高一下期末质量检测试题含解析_第4页
2024届内蒙古赤峰市、呼和浩特市数学高一下期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古赤峰市、呼和浩特市数学高一下期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列不等式不成立的是()A. B. C. D.2.三边,满足,则三角形是()A.锐角三角形 B.钝角三角形 C.等边三角形 D.直角三角形3.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为()A. B. C. D.4.函数的图象可能是().A. B. C. D.5.一个几何体的三视图如图所示,则这个几何体的表面积为()A.13+5 B.11+5 C.6.在△ABC中,如果,那么cosC等于()A. B. C. D.7.记复数的虚部为,已知满足,则为()A. B. C.2 D.8.已知两个变量x,y之间具有线性相关关系,试验测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.29.已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得与()A.平行B.相交C.异面D.垂直10.已知:平面内不再同一条直线上的四点、、、满足,若,则()A.1 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在等腰直角三角形ABC中,,,以AB为直径在外作半圆O,P是半圆弧AB上的动点,点Q在斜边BC上,若,则的取值范围是________.12.若数列的首项,且(),则数列的通项公式是__________.13.方程的解集是__________.14.方程的解为______.15.正方体中,分别是的中点,则所成的角的余弦值是__________.16.已知点A(-a,0),B(a,0)(a>0),若圆(x-2)2+(y-2)2=2上存在点C三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的值;(2)求的值.18.在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.19.设全集为实数集,,,.(1)若,求实数的取值范围;(2)若,且,求实数的取值范围.20.随着互联网的不断发展,手机打车软件APP也不断推出.在某地有A、B两款打车APP,为了调查这两款软件叫车后等候的时间,用这两款APP分别随机叫了50辆车,记录了候车时间如下表:A款软件:候车时间(分钟)车辆数212812142B款软件:候车时间(分钟)车辆数21028721(1)试画出A款软件候车时间的频率分布直方图,并估计它的众数及中位数;(2)根据题中所给的数据,将频率视为概率(i)能否认为B款软件打车的候车时间不超过6分钟的概率达到了75%以上?(ii)仅从两款软件的平均候车时间来看,你会选择哪款打车软件?21.已知函数.(1)求函数的最小正周期;(2)求函数的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

根据不等式的基本性质、重要不等式、函数的单调性即可得出结论.【题目详解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指数函数在上单调递增,且,∴,故D成立;故选:B.【题目点拨】本题主要考查不等式的基本性质,作差法比较大小,属于基础题.2、C【解题分析】

由基本不等式得出,将三个不等式相加得出,由等号成立的条件可判断出的形状.【题目详解】为三边,,由基本不等式可得,将上述三个不等式相加得,当且仅当时取等号,所以,是等边三角形,故选C.【题目点拨】本题考查三角形形状的判断,考查基本不等式的应用,利用基本不等式要注意“一正、二定、三相等”条件的应用,考查推理能力,属于中等题.3、C【解题分析】

试题分析:从中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为,故选C.考点:古典概型4、D【解题分析】

首先判断函数的奇偶性,排除选项,再根据特殊区间时,判断选项.【题目详解】是偶函数,是奇函数,是奇函数,函数图象关于原点对称,故排除A,B,当时,,,排除C.故选D.【题目点拨】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项.5、B【解题分析】

三视图可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成.【题目详解】几何体可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成S=【题目点拨】已知三视图,求原几何体的表面积或体积是高考必考内容,主要考查空间想象能力,需要熟练掌握常见的几何体的三视图,会识别出简单的组合体.6、D【解题分析】解:由正弦定理可得;sinA:sinB:sinC=a:b:c=2:3:4可设a=2k,b=3k,c=4k(k>0)由余弦定理可得,CosC=,选D7、A【解题分析】

根据复数除法运算求得,从而可得虚部.【题目详解】由得:本题正确选项:【题目点拨】本题考查复数虚部的求解问题,关键是通过复数除法运算得到的形式.8、C【解题分析】试题分析:设样本中线点为,其中,即样本中心点为,因为回归直线必过样本中心点,将代入四个选项只有B,C成立,画出散点图分析可知两个变量x,y之间正相关,故C正确.考点:回归直线方程9、D【解题分析】略10、D【解题分析】

根据向量的加法原理对已知表示式转化为所需向量的运算对照向量的系数求解.【题目详解】根据向量的加法原理得所以,,解得且故选D.【题目点拨】本题考查向量的线性运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

建立直角坐标系,得出的坐标,利用数量积的坐标表示得出,结合正弦函数的单调性得出的取值范围.【题目详解】取中点为,建立如下图所示的直角坐标系则,设,,则,则设点,则,则当,即时,取最大值当,即时,取最小值则的取值范围是故答案为:【题目点拨】本题主要考查了利用数量积求参数以及求正弦型函数的最值,属于较难题.12、【解题分析】,得(),两式相减得,即(),,得,经检验n=1不符合。所以,13、【解题分析】

令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【题目详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【题目点拨】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.14、或【解题分析】

由指数函数的性质得,由此能求出结果.【题目详解】方程,,或,解得或.故答案为或.【题目点拨】本题考查指数方程的解的求法,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.15、【解题分析】

取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【题目详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【题目点拨】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.16、3【解题分析】

利用参数方程假设C点坐标,表示出AC和BC,利用AC⋅BC=0可得到a【题目详解】设C∴∵∠ACB=90°∴∴当sinα+∴0<a≤3本题正确结果:3【题目点拨】本题考查圆中参数范围求解的问题,关键是能够利用圆的参数方程,利用向量数量积及三角函数关系求得最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)20,(2)【解题分析】

(1)先利用同角三角函数的基本关系求得cos和tan的值,进而利用二倍角公式把sin2展开,把sin和cos的值代入即可.(2)先利用诱导公式使=tan(﹣),再利用正切的两角和公式展开后,把tanα的值代入即可求得答案.【题目详解】(1)由,得,所以=(2)∵,∴【题目点拨】本题主要考查了三角函数的化简求值的问题.要求学生能灵活运用三角函数的基本公式.18、(1)或,(2)点P坐标为或.【解题分析】(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d==1,结合点到直线距离公式,得=1,化简得24k2+7k=0,解得k=0或k=-.所求直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有,化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.因为关于k的方程有无穷多解,所以有解得点P坐标为或.19、(1);(2)【解题分析】

(1)根据空集的概念与不等式的解集的概念求解;(2)求出,再由子集概念列式求解.【题目详解】解:(1)由得,(2)由已知得,由(1)可知则解得,由(1)可得时,,从而得【题目点拨】本题考查空集的概念,集合的交集运算,以及集合的包含关系,属于基础题.20、(1)直方图见解析,众数为9,中位数为6.5(2)(i)能(ii)B款【解题分析】

(1)画出频率分布直方图,计算众数和中位数得到答案.(2)计算概率为,得到答案;分别计算两个软件的平均候车时间比较得到答案.【题目详解】(1)频率分布直方图如图:它的众数为9,它的中位数为:.(2)(i)B款软件打车的候车时间不超过6分钟的概率为.所以可以认为B款软件打车的候车时间不超过6分钟的概率达到了75%以上.(ii)A款软件打车的平均候车时间为:(分钟).B款软件打车的平均候车时间为:(分钟).所以选择B款软件打车

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论