版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省怀仁市重点中学2024届数学高一第二学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方体ABCD﹣A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论中错误的是()A.AE∥平面C1BDB.四面体ACEF的体积不为定值C.三棱锥A﹣BEF的体积为定值D.四面体ACDF的体积为定值2.在,,,是边上的两个动点,且,则的取值范围为()A. B. C. D.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯:A.281盏 B.9盏 C.6盏 D.3盏4.在中,角的对边分别为,已知,则的大小是()A. B. C. D.5.若,则等于()A. B. C. D.6.已知数列{an}满足且,则的值是()A.-5 B.- C.5 D.7.在正方体中,E,F,G,H分别是,,,的中点,K是底面ABCD上的动点,且平面EFG,则HK与平面ABCD所成角的正弦值的最小值是()A. B. C. D.8.的周期为()A. B. C. D.9.在正方体中,异面直线与所成的角为()A.30° B.45° C.60° D.90°10.已知等差数列an的前n项和为18,若S3=1,aA.9 B.21 C.27 D.36二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足:,,的前项和记为,若,则实数的取值范围是________12.在△中,,,,则_________.13.设是数列的前项和,且,,则__________.14.若x、y满足约束条件,则的最大值为________.15.已知,,与的夹角为钝角,则的取值范围是_____;16.已知等差数列的前项和为,若,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.不等式(1)若不等式的解集为或,求的值(2)若不等式的解集为,求的取值范围18.已知公差不为零的等差数列{an}和等比数列{bn}满足:a1=b1=3,b2=a4,且a1,a4,a13成等比数列.(1)求数列{an}和{bn}的通项公式;(2)令cn=an•bn,求数列{cn}的前n项和Sn.19.已知等比数列的前n项和为,且,.(1)求数列的通项公式;(2)记,求的前n项和.20.某工厂新研发了一种产品,该产品每件成本为5元,将该产品按事先拟定的价格进行销售,得到如下数据:单价(元)88.28.48.68.89销量(件)908483807568(1)求销量(件)关于单价(元)的线性回归方程;(2)若单价定为10元,估计销量为多少件;(3)根据销量关于单价的线性回归方程,要使利润最大,应将价格定为多少?参考公式:,.参考数据:,21.已知圆,直线(1)求证:直线过定点;(2)求直线被圆所截得的弦长最短时的值;(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据面面平行的性质定理,判断A选项是否正确,根据锥体体积计算公式,判断BCD选项是否正确.【题目详解】对于A选项,易得平面与平面平行,所以平面成立,A选项结论正确.对于B选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以四面体体积为定值,故B选项结论错误.对于C选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以三棱锥体积为定值,故C选项结论正确.对于D选项,由于三角形面积为定值,到平面的距离为定值,所以四面体的体积为定值.综上所述,错误的结论为B选项.故选:B【题目点拨】本小题主要考查利用面面平行证明线面平行,考查三棱锥(四面体)体积的计算,考查空间想象能力和逻辑推理能力,属于基础题.2、A【解题分析】由题意,可以点为原点,分别以为轴建立平面直角坐标系,如图所示,则点的坐标分别为,直线的方程为,不妨设点的坐标分别为,,不妨设,由,所以,整理得,则,即,所以当时,有最小值,当时,有最大值.故选A.点睛:此题主要考查了向量数量积的坐标运算,以及直线方程和两点间距离的计算等方面的知识与技能,还有坐标法的运用等,属于中高档题,也是常考考点.根据题意,把运动(即的位置在变)中不变的因素()找出来,通过坐标法建立合理的直角坐标系,把点的坐标表示出来,再通过向量的坐标运算,列出式子,讨论其最值,从而问题可得解.3、D【解题分析】
设塔的顶层共有盏灯,得到数列的公比为2的等比数列,利用等比数列的前n项公式,即可求解.【题目详解】设塔的顶层共有盏灯,则数列的公比为2的等比数列,所以,解得,即塔的顶层共有3盏灯,故选D.【题目点拨】本题主要考查了等比数列的通项公式与求和公式的应用,着重考查了推理与计算能力,属于基础题.4、C【解题分析】∵,∴,又,∴,又为三角形的内角,所以,故。选C。5、B【解题分析】试题分析:,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.6、A【解题分析】试题分析:即数列是公比为3的等比数列.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.7、A【解题分析】
根据题意取的中点,可得平面平面,从而可得K在上移动,平面,即可HK与平面ABCD所成角中最小的为【题目详解】如图,取的中点,连接,由E,F,G,H分别是,,,的中点,所以,,且,则平面平面,若K是底面ABCD上的动点,且平面EFG,则K在上移动,由正方体的性质可知平面,所以HK与平面ABCD所成角中最小的为,不妨设正方体的边长为,在中,.故选:A【题目点拨】本题考查了求线面角,同时考查了面面平行的判定定理,解题的关键是找出线面角,属于基础题.8、D【解题分析】
根据正弦型函数最小正周期的结论即可得到结果.【题目详解】函数的最小正周期故选:【题目点拨】本题考查正弦型函数周期的求解问题,关键是明确正弦型函数的最小正周期.9、C【解题分析】
首先由可得是异面直线和所成角,再由为正三角形即可求解.【题目详解】连接.因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【题目点拨】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.10、C【解题分析】
利用前n项和Sn的性质可求n【题目详解】因为S3而a1所以6Snn【题目点拨】一般地,如果an为等差数列,Sn为其前(1)若m,n,p,q∈N*,m+n=p+q,则am(2)Sn=n(3)Sn=An(4)Sn二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
因为数列有极限,故考虑的情况.又数列分两组,故分组求和求极限即可.【题目详解】因为,故,且,故,又,即.综上有.故答案为:【题目点拨】本题主要考查了数列求和的极限,需要根据题意分组求得等比数列的极限,再利用不等式找出参数的关系,属于中等题型.12、【解题分析】
利用余弦定理求得的值,进而求得的大小.【题目详解】由余弦定理得,由于,故.【题目点拨】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.13、【解题分析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【题目点拨】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.14、18【解题分析】
先作出不等式组所表示的平面区域,再观察图像即可得解.【题目详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【题目点拨】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.15、【解题分析】
与的夹角为钝角,即数量积小于0.【题目详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【题目点拨】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.16、【解题分析】
先由题意,得到,求出,再由等差数列的性质,即可得出结果.【题目详解】因为等差数列的前项和为,若,则,所以,因此.故答案为:【题目点拨】本题主要考查等差数列的性质的应用,熟记等差数列的求和公式,以及等差数列的性质即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)根据一元二次不等式的解和对应一元二次方程根的关系,求得的值.(2)利用一元二次不等式解集为的条件列不等式组,解不等式组求得的取值范围.【题目详解】(1)由于不等式的解集为或,所以,解得.(2)由于不等式的解集为,故,解得.故的取值范围是.【题目点拨】本小题主要考查一元二次不等式的解与对应一元二次方程根的关系,考查一元二次不等式恒成立问题的求解策略,属于基础题.18、(1)an=2n+1;bn=3n;(2)Sn=n•3n+1.【解题分析】
(1)利用基本元的思想,结合等差数列、等比数列的通项公式、等比中项的性质列方程,解方程求得的值,从而求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和.【题目详解】(1)公差d不为零的等差数列{an}和公比为q的等比数列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比数列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an•bn=(2n+1)•3n,前n项和Sn=3•3+5•32+7•33+…+(2n+1)•3n,3Sn=3•32+5•33+7•34+…+(2n+1)•3n+1,两式相减可得﹣2Sn=9+2(32+33+…+3n)﹣(2n+1)•3n+1=9+2•(2n+1)•3n+1,化简可得Sn=n•3n+1.【题目点拨】本小题主要考查等差数列,等比数列通项公式,考查错位相减求和法,考查运算求解能力,属于中档题.19、(1)(2)【解题分析】
(1)直接利用等比数列公式计算得到答案.(2),,利用错位相减法计算得到答案.【题目详解】(1)设等比数列的首项为,公比为,显然.,.两式联立得:,,.(2),所以.则,①,②,①-②得:.所以.【题目点拨】本题考查了等比数列通项公式,错位相减法,意在考查学生对于数列公式方法的灵活运用.20、(1)(2)当销售单价定为10元时,销量为50件(3)要使利润达到最大,应将价格定位8.75元.【解题分析】
(1)由均值公式求得均值,,再根据给定公式计算回归系数,得回归方程;(2)在(1)的回归方程中令,求得值即可;(3)由利润可化为的二次函数,由二次函数知识可得利润最大值及此时的值.【题目详解】(1)由题意可得,,则,从而,故所求回归直线方程为.(2)当时,,故当销售单价定为10元时,销量为50件.(3)由题意可得,,.故要使利润达到最大,应将价格定位8.75元.【题目点拨】本题考查线性回归直线方程,解题时只要根据已知公式计算,计算能力是正确解答本题的基础.21、(1)直线过定点(2).(3)在直线上存在定点,使得为常数.【解题分析】分析:(Ⅰ)利用直线系方程的特征,直接求解直线l过定点A的坐标.(Ⅱ)当AC⊥l时,所截得弦长最短,由题知,r=2,求出AC的斜率,利用点到直线的距离,转化求解即可.(Ⅲ)由题知,直线MC的方程为,假设存在定点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论